CHAPTER 1
TRANSMISSION LINES

1.1, Waveguides as Transmission Lines.—The determination of the
electromagnetic fields within any region is dependent upon one’s ability
to solve explicitly the Maxwell field equations in a coordinate system
appropriate to the region. Complete solutions of the field equations, or
equivalently of the wave equation, are known for only relatively few
types of regions. Such regions may be classified as either uniform or
nonuniform. Uniform regions are characterized by the fact that cross
sections transverse to a given symmetry, or propagation, direction are
almost everywhere identical with one another in both size and shape.
Nonuniform regions are likewise characterized by a symmetry, or propa-
gation, direction but the transverse cross sections are similar to rather
than identical with one another.

Examples of uniform regions are provided by regions cylindrical
about the symmetry direction and having planar cross sections with rec-
tangular, circular, etc., peripheries. Regions not cylindrical about the
symmetry direction and having nonplanar cross sections of cylindrical,
spherical, etc., shapes furnish examples of nonuniform regions {(cf. Secs.
1-7 and 1-8). In either case the cross sections may or may not be limited
by metallic boundaries. Within such regions the electromagnetic field
may be represented as a superposition of an infinite number of standard
functions that form a mathematically complete set. These complete
sets of functional solutions are classical and have been employed in the
mathematical literature for some time. However, in recent years the
extensive use of ultrahigh frequencies has made it desirable to reformulate
these mathematical solutions in engineering terms. It is with this
reformulation that the present chapter will be concerned.

The mathematical representation of the electromagnetic field within a
uniform or nonuniform region is in the form of a superposition of an
infinite number of modes or wave types. The electric and magnetic field
components of each mode are factorable into form functions, depending
only on the cross-sectional coordinates transverse to the direction of
propagation, and into amplitude functions, depending only on the coordi-
rate in the propagation direction. The transverse functional form of
each mode is dependent upon the cross-sectional shape of the given

region and, save for the amplitude factor, is identical at every cross
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section. As a result the amplitudes of a mode completely characterize
the mode at every cross section. The variation of each amplitude along
the propagation direction is given implicitly as a solution of a one-
dimensional wave or transmission-line equation. Aeccording to the mode
in question the wave amplitudes may be either propagating or attenuating
along the transmission direction.

In many regions of practical importance, as, for example, in wave-
guides, the dimensions and field excitation are such that only one mode is
capable of propagation. As a result the electromagnetic field almost
everywhere is characterized completely by the amplitudes of this one
dominant wave type. Because of the transmission-line behavior of the
mode amplitudes it is suggestive to define the amplitudes that measure
the transverse electric and magnetic field intensities of this dominant
mode as voltage and current, respectively. It is thereby implied that
the electromagnetic fields may be described almost everywhere in terms
of the voltage and current on an appropriate transmission line. This
transmission line completely characterizes the behavior of the dominant
mode everywhere in the waveguide. The knowledge of the real charac-
teristic impedance and wave number of the transmission line then permits
one to describe rigorously the propagation of this dominant mode in
familiar impedance terms.

The impedance description may be extended to describe the behavior
of the nonpropagating or higher modes that are present in the vicinity
of cross-sectional discontinuities. Mode voltages and currents are
introduced as measures of the amplitudes of the transverse electric and
magnetic field intensities of each of the higher modes. Thus, as before,
each of the higher modes is represented by a transmission line but now the
associated characteristic impedance is reactive and the wave number
imaginary, i.e., attenuating. In this manner the complete description
of the electromagnetic field in a waveguide may be represented in terms
of the behavior of the voltages and currents on an infinite number of
transmission lines. The quantitative use of such a representation in a
given waveguide geometry presupposes the ability to determine explicitly
the following:

1.. The transverse functional form of each mode in the waveguide
cross section.

2. The transmission-line equations for the mode amplitudes together
with the values of the mode characteristic impedance and propaga-
tion constant for each mode.

3. Expressions for the field components in terms of the amplitudes
and functional form of the modes.

The above-deseribed impedance or transmission-line reformulation of the
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electromagnetic field will be carried out for a number of practical uniform
and nonuniform waveguides.

1.2. Field Representation in Uniform Waveguides.—By far the
largest class of waveguide regions is the uniform type represented in Fig.
1-1. Such regions are cylindrical and have, in general, an arbitrary cross
section that is generated by a straight line moving parallel to the sym-
metry or transmission direction, the latter being characterized by the
unit vector zo. In many practical waveguides the cross sectional geom-
etry i§ described by a coordinate system appropriate to the boundary

—_—
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Fic. 1:1.—Uniform waveguide of arbitrary cross section.

curves although this is not a necessary requirement. Since the trans-
mission-line description of the electromagnetic field within wuniform
guides is independent of the particular form of coordinate system employed
to describe the cross section, no reference to cross-sectional coordinates
will be made in this section. Special coordinate systems appropriate to
rectangular, circular, and elliptical cross sections, ete., will be considered
in Chap. 2. To stress the independence of the transmission-line descrip-
tion upon the cross-sectional coordinate system an invariant transverse
vector formulation of the Maxwell field equations will be employed in the
following. This form of the field equations is obtained by elimination of
the field components along the transmission, or z, direction and can be
written, for the steady state of angular frequency w, as

6 i -
_JE_ = —jkt(e + —12 v.v) - (H, X 7o),
2 k
dH, . 1 W
o2 = —gjkqn(e + PVtVL) (2o X E)).

Vector notation is employed with the following meanings for the symbols:

E, = E/(z,y,2) = the rms electric-field intensity transverse to the
z-axis.’

H, = H/(z,y,z) = the rms magnetic-field intensity transverse to the
z-axis.

{ = intrinsic impedance of the medium = 1/9 = /u/e
k = propagation constant in medium = & Vv pe = 27/A
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V. = gradient operator transverse to z-axis! = V — 20562

¢ = unit dyadic defined such thate-A = A-e = A

The time variation of the field is assumed to be exp (4jwt). The z com-
ponents of the electric and magnetic fields follow from the transverse
components by the relations

jknE.
jktH,

I

@)

I

V. (H: X zo),
Vt . (Zo X E[).

Equations (1) and (2), which are fully equivalent to the Maxwell
equations, make evident in transmission-line guise the separate depend-
ence of the field on the cross-sectional coordinates and on the longitudinal
coordinate z. The cross-sectional dependence may be integrated out of
Egs. (1) by means of a suitable set of vector orthogonal functions.
Functions such that the result of the operation V,V,- on a function is
proportional to the function itself are of the desired type provided they
satisfy, in addition, appropriate conditions on the boundary curve or
curves s of the cross section. Such vector functions are known to be of
two types: the E-mode functions e] defined by

eﬁ = —V,fb.-,
h! =z, X e, (3a)
where
Vi®, + kii®; = 0
®;, =0onsifkl; #0 (3b)
0d; e o1t *
— =0onsif k, =0;
as
and the H-mode functions e, defined by
e‘” = Zo X v;\I’,‘,
h:l =1z, X eI/‘/’ (4(1)
where
Vi, + kLY = 0,
Iv; 4b
3 = O on s, (4b)
! For a cross-section defined by a rectangular zy coordinate system
a 0
Ve = X, 3z + ¥o @’

where X, and y, are unit vectors in the z and y directions.

* The case k.; = 0 arises in multiply connected cross sections such as those encoun-
tered in coaxial waveguides. The vanishing of the tangential derivative of &; on s
implies that ®; is a constant on each periphery.
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where 7 denotes a double index mn and » is the outward normal to s in
the cross-section plane. For the sake of simplicity, the explicit depend-
ence of e, e, ®;, and ¥; on the cross-sectional coordinates has been
omitted in the writing of the equations. The constants k[, and k[; are
defined as the cutoff wave numbers or eigenvalues associated with the
guide cross section. Explicit expressions for the mode functions and
cutoff wave numbers of several waveguide cross sections are presented in
Chap. 2.
The functions e; possess the vector orthogonality properties

lfori =3
’al _ "ot _ ,
/’/e‘ eids_//ei efds_‘Ofori#j
(5)
//e:.e;’ds=07

with the integration extended over the entire guide cross section. The
product e; - €; is a simple scalar product or an Hermitian (i.e., complex
conjugate) product depending on whether or not the mode vectors are
real or complex.

The transverse electric and magnetic fields can be expressed in terms
of the above-defined orthogonal functions by means of the representation

Ewwd+zwvmz

1

Emz)h: + zzz'<z>hz',

E,

(6a)
H,

1

and inversely the amplitudes V; and I; can be expressed in terms of the

fields as
Vi= //E;'d- ds, {44 // E. e/ ds,
Il = //H;-hf ds, I; //H.-h,f' ds.

The longitudinal field components then follow from Egs. (2), (3), (4), and
(6a) as

(6b)

inE = ) ek,
: (6¢)
jheH, = z VIR,
i
In view of the orthogonality properties (5) and the representation (6a),
the total average power flow along the guide at z and in the z, directionis,
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P. = Re ( / / E. X H* -z, dS) = Re <2 Vi 2 V;'Ig'*), )

where all quantities are rms and the asterisk denotes the complex
conjugate.

For uniform guides possessing no discontinuities within the guide cross
section or on the guide walls the substitution of Eqgs. (6a) transforms
Egs. (1) into an infinite set of equations of the type

Vs _ —jxiZL,

dz

dl; . ®)
‘(E = —‘JKiY;'Vi,

which define the variation with z of the mode amplitudes V; and 7I;,. The
superseript distinguishing the mode type has been omitted, since the
equations are of the same form for both modes. The parameters x; and
Z; are however of different form; for E-modes

- ! !
= — i A L
=VE -k, Zi=tF- (%)
for H-modes
R L (9%)

Equations (8) are of standard transmission-line form. They con-
stitute the basis for the definition of the amplitudes V, as mode voltages,
of the amplitudes I; as mode currents, and concomitantly of the para-
meters «; and Z; as the mode propagation constant and mode char-
acteristic impedance, respectively. The functional dependence of the
parameters x; and Z on the cross-sectional dimensions is given in Chap. 2
for several waveguides of practical importance.

The field representation given by Egs. (6a) and (8) provides a general
solution of the field equations that is particularly appropriate for the
description of the guide fields in the vicinity of transverse discontinuities
—such as apertures in transverse plates of zero thickness, or changes of
cross section. The field representation given in Egs. (6a) is likewise
applicable to the description of longitudinal discontinuities—such as
obstacles of finite thickness or apertures in the guide walls. However, as
is evident on substitution of Egs. (6a) into Egs. (1), the transmission-line
equations (8) for the determination of the voltage and current amplitudes
must be modified to take into account the presence of longitudinal
discontinuities within the cross section. This modification results in the
addition of z-dependent ““generator’” voltage and current terms to the
right-hand members of Egs. (8). The determination of the mode
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amplitude for the case of longitudinal discontinuities is thus somewhat
more complicated than for the case of transverse discontinuities. Both
cases, however, constitute more or less conventional transmission-line
problems.

1.3. Uniform Transmission Lines.—As shown in Sec. 1-2 the repre-
sentation of the electric and magnetic fields within an arbitrary but
uniform waveguide (¢f. Fig. 1-1) can be reformulated into an engineering
description in terms of an infinite number of mode voltages and currents.
The variation of each mode voltage and current along the guide axis is
described in terms of the corresponding variation of voltage and current
along an appropriate transmission line. The description of the entire
field within the guide is thereby reduced to the description of the elec-
trical behavior on an infinite set of transmission lines. In this section
two distinctive ways of describing the electrical behavior on a trans-
mission line will be sketched: (1) the impedance (admittance) description,
(2) the scattering (reflection and transmission coefficient) description.

The transmission-line description of a waveguide mode is based on the
fact, noted in the preceding section, that the transverse electric field E,
and transverse magnetic field H, of each mode can be expressed as

El(x;y)z) V(z)e(a:,y),
Ht(x;yyz) I(z)h(ny)y (10)

where e(z,5) and h(z,y) are vector functions indicative of the cross-
sectional form of the mode fields, and V(z) and I (2) are voltage and current
functions that measure the rms amplitudes of the transverse electric and
magnetie fields at any point 2 along the direction of propagation. As a
consequence of the Maxwell field equations (¢f. Sec. 1-2) the voltage
and current are found to obey transmission-line equations of the form

%/ = —juZI,
a . (1)
E = —]KYV,

where, for a medium of uniform dielectric constant and permeability,

K= VB

ok e
7 1\ §'K =\ for H-modes, (11a)
Y K
— o kX ,
=¢ 3 TN for E-modes.

Since the above transmission-line description is applicable to every mode,
the sub- and superseripts distinguishing the mode type and number will
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be omitted in this section. The parameters k, k., «, and Z are termed the
free-space wave number, the cutoff wave number, the guide wave number,
and the characteristic impedance of the mode in question. Instead of
the parameters k, k., and « the corresponding wavelengths A, X, and A, are
frequently employed. These are related by

2 27

2w
k-—T’ kc——)\—cl K—Xg—r

A = . (118)

)\ 2

V- )
The explicit dependence of the mode cutoff wave number k. and mode
functions e and h on the cross-sectional geometry of several uniform
guides will be given in Chap. 2. Together with the knowledge of the
wavelength X of field excitation, these quantities suffice to determine

completely the transmission-line behavior of an individual mode.

Since the voltage V and current I are chosen as rms quantities, and
since the vector functions e and h are normalized over the cross section
in accordance with Eq. (5), the average total mode power flow along the
direction of propagation is Re (VI*). Although the voltage V and
current I suffice to characterize the behavior of a mode, it is evident that
such a characterization is not unique. Occasionally it is desirable to
redefine the relations [Egs. (10)] between the fields and the voltage and
current in order to correspond more closely to customary low-frequency
definitions, or to simplify the equivalent circuit description of waveguide
discontinuities. These redefinitions introduce changes of the form

|4

V=W,

I = N%J, (12a)
where the scale factor N* is so chosen as to retain the form of the power
expression as Re (VI*). On substitution of the transformations (12a)
into Eqgs. (11) it is apparent that the transmission-line equations retain
the same form in the new voltage V and current I provided a new charac-
teristic impedance

1

Z =2ZN =
Y

(12b)
is introduced. Transformation relations of this kind are generally
important only in the case of the dominant mode and even then only
when absolute impedance comparisons are necessary. Most trans-

mission-line properties depend on relative impedances; the latter are
unaffected by transformations of the above type.
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Equations (11) may be schematically represented by the transmission-
line diagram of Fig. 12 wherein the choice of positive directions for V and
I is indicated. To determine explicit solutions of Egs. (11) it is con-
venient to eliminate either I or V and thus obtain the one-dimensional
wave equations

axw

S TV =0 (13q)
or
2
‘% + & = 0. (13b)

Equations (13) define waves of two types: either propagating or atten-
uating with the distance z depending on whether the constant «? is either
positive or negative. Although

both types of waves can be treated s Iz

by the same formalism, the follow-

. . . T T
ing applies particularly to the ] K |
. t
propagating type. \ !
Impedance Descriptions.—The N | ! —Zo
solutions to Egs. (13) can be @ { Vizo)
written as a superposition of the ! z !
trigonometrical functions z 2o
. Fra. 1-2.—Choice of positive directions of
COS Kz, S1n k2. (14) voltage and current in a uniform transmission

line.
By means of these so-called stand- e

ing waves, the solutions to Eq. (11) can be expressed in terms of the
voltage or current at two different points 2, and 2, as

V(zo) sin x(zy — 2) + V(z)) sin «(z — zo),

V) = sin x(z; — 2o) (15a)
1) = I(zo) sin «(zy = z) + I(2y) sin x(z — zu), (150)
sin k(21 — 2o)
or in terms of the voltage and current at the same point 2, as
V(z) = V(zo) cos k(z — 2zo) — jZI(2o) sin x(z — zo), (16a)
I(z) = I(20) cos k(z — 20) — jYV(z) sin x(z — 2). (16b)

Equations (16) represent the voltage and current everywhere in terms
of the voltage and current at a single point z,. Since in many applica-
tions the absolute magnitudes of ¥ and I are unimportant, it is desirable
to introduce at any point 2 the ratio

1 I(2)
Y V@)

1

=YO = 53

(17
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called the relative, or normalized, admittance at z looking in the direction
of increasing z. In terms of this quantity BEgs. (16) can be reexpressed,
by division of Egs. (16a) and (16b), in the form

Y'(z) = g+ Y'(zo) cot xlzo — 2)

cot k(20 — 2) + jY’(zo)’ (18)

which is the fundamental transmission-line equation relating the relative
admittance at any point z to that at any other point 2o.

Many graphical schemes have been proposed to facilitate computa-
tions vith Eq. (18). One of the more convenient representations, the
so-called circle diagram, or Smith chart, is shown in Fig. 1-3. For real «
this diagram represents Eq. (18) as a constant radius rotation of the
complex quantity Y'(zy) into the complex quantity Y'(z), the angle of
rotation being 2x(z¢ — 2) radians. Since graphical uses of this diagram
have been treated in sufficient detail elsewhere in this series,! we shall
consider only a few special but important analytical forms of Eq. (18).
For Y'(20) = =,

Y'(2) = —jcot x(zg — 2); (19a)
for Y'(20) = 0,

Y'(z) = +jtan x(z0 — 2); (19%)
for Y'(z0) = 1,

Y'(z) = 1. (19¢)

These are, respectively, the relative input admittances at z corresponding
to a short circuit, an open circuit, and a “match’” at the point zq.

The fundamental admittance relation [Eq. (18)] can be rewritten as
an impedance relation

’ = ] + Z/(Zg) cot K(Zo — Z)
200 = ot ke =2 ¥ 7y (20)

The similarity in form of Egs. (18) and (20) is indicative of the existence
of a duality principle for the transmission-line equations (11). Duality
in the case of Eqgs. (11) implies that if V| I, Z are replaced respectively
by I, V, Y, the equations remain invariant in form. As a consequence
relative admittance relations deduced from Egs. (11) have exactly the
same form as relative impedance relations.

It is occasionally desirable to represent the admittance relation (18)
by means of an equivalent circuit. The circuit equations for such a
representation are obtained by rewriting Eqgs. (16) in the form

I(z) = —1Y cot «k(zg — 2){V(2)] — 7Y ese x(z0 — 2)[— V(zo)], 21a)
I(zo) = —3Y csc w(zo — 2){V(2)] — 7Y cot x(z0 — 2)[— V{(20)].

1 ¢f. G. L. Ragan, Microwave Transmission Circuits, Vol. 9, Radiation Laboratory
Series,
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Fia. 1:3.—Circle diagram for uniform transmission lines.

The equivalent circuit is schematically represented by the = network
shown in Fig. 1-4 which indicates both the positive choice of voltage and
current directions as well as the admittance values of the circuit elements
for a length [ = 2¢ — 2z of transmission line.

By the duality replacements indicated above, Egs. (2la) may be
written in impedance form as

Viz) —3Z cot k(zg — 2)[I(2)] — FZ csc «{zo — 2)[—1(z0)],
Vizo) = —jZ cse x(zo — 2)[I(2)] — jZ cot k(20 — 2)[—1(20)].

(21b)
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Hence an alternative equivalent circuit for a length ! of transmission line
may be represented by the T network shown in Fig. 1-4b wherein are
indicated the impedance values of the circuit elements. The relation
between the impedances at the points z and z, follows from the above
circuit representations by the well-known combinatorial rules for
impedances.

1(z) I(zo) 1) =1{Zo)
= ) o ==, -
-jYcsc Kl
AN~ AN AN
I jZtan & iZzan & T
et Kl . Kl
JYtan = jYtan> 52 csc Kl
V) 2 23 vz v 7 Vizo)

(@) (®)
Fia. 1-4.—(a) w-Circuit for a length ! of uniform transmission line; (b) T-circuit for a
length I of uniform transmission line.

An alternative form of Eq. (18) useful for conceptual as well as
computational purposes is obtained on the substitution

Y'(2) = —j7 cot 6(2). (22a)

The resulting equation for 6(z) in terms of 8(z,) is, omitting an additive
multiple of 2,
0(z) = 6(20) + x(z0 — 2). (22b)

The quantity 6(z) represents the electrical ‘“length” of a short-circuit
line equivalent to the relative admittance Y’(z). The fundamental
transmission-line relation (18), expressed in the simple form of Eq. (22b),
states that the length equivalent to the input admittance at z is the
algebraic sum of the length equivalent to the output admittance at z,
plus the electrical length of the transmission line between z and z,. It
should be noted that the electrical length corresponding to an arbitrary
admittance is in general complex.

In addition to the relation between the relative admittances at the
two points z and 2o the relation between the frequency derivatives of the
relative admittances is of importance. The latter may be obtained by
differentiation of Eqgs. (21) either as
dY’'(z) dY’(z,)

dx . T dk
T+ Gv@r ¢ 2t Trpyer

K

(23a)

or, since from Eq. (11b)

de _ (BY'dk _ (KYdo _ _ ()
«  \«/ k  \«) o A X
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as

Qv kY do . dY'(z0)
TTGveER = (E) Moo= I Gy eor (&Y

It should be emphasized that Eq. (23b) determines the frequency deriva-
tive of the relative admittance. If the characteristic admittance Y varies
with frequency, it is necessary to distinguish between the frequency
derivatives of the relative admittance Y’(z) and the absolute admittance
Y(z) by means of the relation

0 2E Y[ ¥’ (”)] + Y )( dY) 24)

Equations (22) to (24) are of importance in the computation of frequency
sensitivity and @ of a waveguide structure.

1.4. Uniform Transmission Lines. Scattering Descriptions.—The
scattering, just as the impedance, description of a propagating mode is
based on Egs. (10) to (11), wherein the mode fields are represented in
terms of a voltage and a current. For the scattering description, how-
ever, solutions to the wave equations (13) are expressed as a superposition
of exponential functions

e—ixe and etie, (25)

which represent waves traveling in the direction of increasing and decreas-
ing z. The resulting traveling-wave solutions can be represented as

V(Z) = e—“(:—zo) + V e+1k(=—lo) (Zﬁa)
ZI(Z) = I/me g—in(z—z0) — V ﬂe-Hx(z—zn) (261))

where Vino and Vs are the complex amplitudes at z = 2z, of “incident”
and “reflected’”’ voltage waves, respectively.

Equations (26) constitute the complete description of the mode fields
everywhere in terms of the incident and reflected amplitudes at a single
point. Since many of the physical properties of the mode fields depend
only on a ratio of incident and reflected wave amplitudes, it is desirable
to introduce at any point z the ratio

Vreﬂ
Vino

mo

T(z) = i 2x(z—20) 27
called the voltage reflection coefficient. The current reflection coefficient
defined as the negative of the voltage reflection coefficient is also employed
in this connection. However, in the following the reflection coefficient T
is to be understood as the voltage coefficient.

In terms of Eqgs. (26) and (27) the expression (7) for the total average
power flow at any point z on a nondissipative uniform transmission line
becomes



14 TRANSMISSION LINES [SEc. 14

_ Wasel® [ Veal? _ [Viee[?

P = Re (VI*) > - 7

1 — (TP, (28)
which may immediately be interpreted as the difference between the
incident and the reflected power flowing down the guide. Equation (28)
makes evident the significance of |T|? as the power reflection coefficient,
which, in turn, implies that |I'| < 1.

The relation between the reflection coefficients at z and 2, is simply

I(z) = T(e)erme=, (29)

A graphical representation of Eq. (29) is afforded by the circle diagram
shown in Fig. 13 from which both the amplitude and phase of the re-
flection coefficient may be obtained. The greater simplicity of the
fundamental reflection-coefficient relation (29) as compared with the
admittance relation (18) implies the advantage of the former for computa-
tions on transmission lines without discontinuities. The presence of dis-
continuities on the line leads to complications in description that usually
are more simply taken into account on an admittance rather than a reflec-
tion-coefficient basis. In any case both methods are equivalent and, as
seen by Eqgs. (26) and (27), the connection between them follows from
the relations

1 — TI'(2) 1—Y'(2)

14 — — .

YO =131 o "0=1r3vrg

It is frequently useful to employ a circuit representation of the con-

nection between the scattering and impedance descriptions at any point

zo of a transmission line. This representation is based on the fact, evi-
dent from Eqs. (26), that

(30)

V(zo) = 2Viae — ZI1(20), (31a)
or
I(Zo) = 2l — YV(Z()), (31b)
where
Twe = YVie.

These relations are schematically represented by the circuits shown in
Fig. 1-5a and b. Figure 1-5a indicates that the excitation at zo may be
thought of as arising from a generator of constant voltage 2Vi.. and
internal impedance Z. The alternative representation in Fig. 1-5b shows
the excitation as a generator of constant current 2. and internal
admittance Y.

A transmission-line description that is particularly desirable from the
measurement point of view is based on the standing-wave pattern set up
by the voltage or current distribution along the line. From Eqgs. (26a)
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and (27) the amplitude of the voltage pattern at any point z is given by

V()| = [Vad V1 + T2 + 2[T[ cos &(z), (32)
where
r(e) = [T,

defines the amplitude |T'| and phase ® of the reflection coefficient. Most
probe types of standing-wave detectors read directly proportional to the
voltage amplitude or its square. The ratio of the maximum to the mini-

I(zg) I(zo)
7 —_— —_
AN ° o
T 4]
ZVinc V(ZO) T g>21inc V(ZO)
o o

(@) ®

Fia. 1:5.—(a) Representation of an incident wave at 2o as a constant-voltage generator;
(b) representation of an incident wave at 20 as a constant-current generator.

mum voltage amplitude is defined as the standing-wave ratio r and is
given by Eq. (31) as

1= lF\, (33&)
and similarly the location of the minimum #mw is characterized by

B (Zmin) = 7. (33b)

At any point z the relation between the reflection coefficient and the
standing-wave parameters can then be expressed as
r—1 r—1 .
= — " pi?2(z—zmin) — — 2xd
T'(z) T+Ic T+1c’ . 34)
For the calculation of frequency sensitivity it is desirable to supple-
ment the relation between the reflection coefficients at two points on a
transmission line by the corresponding relation for the frequency deriva-
tives. The latter is obtained by taking the derivative with respect to «
of the logarithm of both sides of Eq. (29). This yields

dl'(2) _ dT'(zo)
r'(z)  T(z)

+ j2x(z — 20) % (35)
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For the case of nondissipative transmission lines (x real) it is useful to
separate Eq. (35) into its real and imaginary parts as

dir(z)|  d{F(20)]
L@ _ TG

Ta T da o
w w

dd dd k\?
R T (E> ’ .
o "

since from Eq. (11b)

dc (k)zdk a <k>2 dw

« \k/) F \&/) @
It is seen that on a relative change of frequency dw/w, the relative
change d|T'|/IT| in amplitude of the reflection coefficient is identical at
any two points z and 2z, on the transmission line. The absolute change
d® in phase of the reflection coefficient at z differs from that at z, by an
amount proportional to the change in electrical length of the intervening
line. Equations (35) and (36) are equivalent to the corresponding
Eqgs. (23) for the admittance frequency sensitivity. The former are
more suited for the investigation of broad-banding questions on long
transmission lines, while the latter are more suited to the computation
of @’s of short lengths of transmission lines or cavities.

1.6. Interrelations among Uniform Transmission-line Descriptions.—
The interrelations among the impedance, relative admittance, reflection
coefficient, and standing-wave characterizations of the voltage and cur-
rent behavior on a uniform transmission line may be summarized as

= -¢=_f_~_l.2d=l—Y’=Z’—l
T = [Tl — ¢ TV - 737 (37a)
Y,=1_1—I‘__—_7—{—rcotxd (37b)

Z' " 1+T cotxd —gr

On separation into real and imaginary parts these relations may be writ-
ten in the form

r—1_ J1-G)»+B" [(B—-12+X"

r+1l NG +@2+ B YE + 12+ X7

® = 2kd + v = tan™! (#)
B +aG¢ -1

= tan™! (_ﬂ_”;_:i) (380)

| = (38)
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14 _ VU 6y + B+ VU -G+ B
1= |F| \/(1 + G’)z + B’, — \/(1 — G’)Z + Bl’
_ VEA DI A VR -1 1 X

= e : (38c)
VR + 1)+ X - VE® -1+ X
' R _ T _ 1 — \P\z
¢ = R" + X" T rTsin?kd + cos?ud 1 + 2|7 cos @ + lI‘l?Y (38d)
,_  —X' (= 1)cot«kd _ —2|T| sin &
B = R® + X* r+cotxd 1+ 2 cos®+ [T (38¢)
A r _ 1 — |I)2
k= G+ B Trcostkd +sintkd 1 — 2]T] cos @ + [I]¥ (38f)
,_ =B (Q—=rycotkd _ 2\T| sin & 38
¢ +B" rtcotfkd+1 1 — 2 cos® + [T (38¢)

where Y’ = G’ + jB’ = relative admittance at 2.
Z' = R’ + jX’ = relative impedance at z.
I = |I'|e’* = reflection coefficient at z.
r = voltage standing-wave ratio.
d = 2z — z=in = distance to standing-wave minimum.
P, = 1 — |T|2 = relative transmitted power.
P, = |T'|? = relative reflected power.
As previously stated Fig. 1-3 provides a graphical representation of most
of the above relations. In addi-

10
tion the graph of the dependence 09 ~N

of P, P, and || on r, shown in 08 LR,

Fig. 1-6, is often of use. 07 Ne L
1-6. Uniform  Transmission ™N

Lines with Complex Parameters. & . e N

a. Waveguides with Dissipation.— & 04 rl. b

H0ned N

The presence of dissipation in 03 A
either the dielectric medium or ’ V1

: . 02 2
metallic walls of a waveguide o1 { L1
modifies slightly the transmission- o T
line description [Eq. (11)] of a 112 16 2 25 3354 6 8 10
. . . VSWR
propagating mode. This modifi- Fig. 1-6.—Relation between VSWR and

cation takes the form of a com- (a) reflection coefficient T, (b) relative power
plex rather than an imaginary reflected P,, (¢) relative power transmitted P,.
propagation constant v and leads to transmission-line equations that may
be written as

dav
i dz
l dl
| dz

= _7ZI:
(39)
= —4YV.
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The complex propagation constant v may be expressed as
y=a+if=VE-F, (39a)

where the attenuation constant «, the inverse of which is the distance
along z for the field to decay by 1/¢, and the wave number 8 = 2x /), are
determined by the type of dissipation, the mode in question, and the
geometry of the waveguide. The quantity 8.686c, the decibels of
attenuation per unit length, or its inverse 1/8.686«, the loss length per
decibel of attenuation, is frequently employed as a measure of attenuation
instead of «. The characteristic impedance Z = 1/Y is likewise complex
and, for the same voltage-current definitions (10) as employed in the
nondissipative case, is given by
— o for H-modes

(39b)

= for E-modes,
Jwe

)
Y
Y
w
where u and ¢, the permeability and dielectric constant of the medium
filling the waveguide, may in general be complex.

Electric-type dissipation in the dielectric medium of a waveguide may
be taken into account by introduction of a complex relative dielectric
constant

€

= ¢ ~jé’, (40)
0

where ¢ is the relative dielectric constant and ¢’ the loss factor. For a
medium having a relative permeability of unity, the propagation constant

is
2m\? 2r\?% e
EEE e
In a waveguide having a cutoff wavelength A; > Ao the attenuation
constant « is, therefore,

_ 71)\46:, _2r -1+ (I + 2B 2x . sinh~! z

a = b B i W sinh ) (42a)
~ Thgoe” _a

™ (1) e, )

1 1 ,
=y (1 ~ % ) z>» 1, {42c)
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TaBLE 1-1.—PROPERTIES OF DIELECTRIC MATERIALS*
f = 100 cps /=3 X 10® cps J = 1010 cps
A=3X10%cm | A =10 cm A=3cm
Substance Uses
¢ o o o ¢ o
1. Ceramic and other inorganic
materials:
AlSiMag243................ 6.30 | 0.0013 5.75 | 0.0002 5.40 1 and 6
Steatite Ceramic F-66 6.25 | 0.0015 6.25 [ 0.00055 | ..... 1
TI-Pure 0-600............ .| 99.0 0.001 | ..... [ ....... | .0, 1
Tam Ticon T-J, T-L, T-M... .| 96.0 0.0008 | 98.0 0.00034 | ..... 1
Mixture of ceramics and poly-
mers:
Titanium dioxide (41.9%)...
Polydichlorostyrene (58.1 %). } 3.50 | 0.0031 5.30 | 0.00060 5.30 | 0.00085 1
Titanium dioxide (65.3 %). ..
Polydichlorostyrene (34.7 %). } 10.2 0.0016 | 10.2 0.00067 | 10.2 0.00132 1
Titanium dioxide (81.4%). ..
Polydichlorostyrene (18.6 %). } 23.6 0.0060 | 23.0 0.0013 23.0 0.00157 1
Fused quartz................ 3.85 | 0.0009 3.80 | 0.0001 3.80 | 0.0001 1
Ruby mica. ... 5.4 0.0025 5.4 0.0003 | ..... | ....... 7
Myecalex 1364. . 7.09 | 0.0059 6.91 (000360 | ..... | ....... 1
Myecalex K10... 9.5 0.0170 | 11.3 0.004 11.3 0.Cc04 1
Turx 52...... ...l 7.04 | 0.0078 6.70 | 0.0052 6.69 | 0.0066 1
Turx 160. .. ................. 7.05 | 0.0063 6.83 | 0.00380 6.85 | 0.0049 1
AlSiMag393................ 4.95 | 0.0038 4.95 | 0.00097 4.95 | 0.00097 1
2. Glesses and mixtures with
glasses:
Corning glass 707............ 4.00 [ 0.0006 4.00 [ 0.0019 3.99 | 0.0021 6
Corning glass 790.. .. ........ 3.90 | 0.0006 3.84 | 0.00068 3.82 | 0.00094 6
Corning glass (C. Lab. No.

TI4IM) ..o 4.15 | 0.0020 4.00 | 0.0010 4.00 | 0.0016 6
Corning glass 8871........... 8.45 | 0.0018 8.34 | 0.0026 8.05 | 0.0049 7
Polyglas P +................ 3.45 | 0.0014 3.35 | 0.00078 3.32 | 0.00084 1
Polyglas D + (Monsanto)....| 3.25 | 0.0005 3.22 | 0.00120 3.22 | 0.0013 1
Polyglas M.................. 5.58 | 0.0140 4.86 | 0.0339 5.22 | 0.0660 1
Polyglas S.................. 3.60 | 0.0011 3.55 | 0.0040 3.53 | 0.0048 1

3. Liquids:
Water conduetivity..........| ..... | ... ... 77.00 | 0.150 | ..... | ....... 3
Fractol A................... 66 2.17 2.15 | 0.00072 4
Cable oil 5314.. 2.28 | 0.001 2.23 | 0.0018 4
Transil 0il 10C.............. 2.24 | 0.001 2.18 | 0.0028 4
Dow Corning 200; 3.87 ¢p....| 2.57 | 0.0005 2.48 | 0.0048 4
Dow Corning 200; 300 ep. ... . 2.75 | 0.0005 2.69 | 0.010 4
Dow Corning 200; 7,600 ¢cs....| 2.75 | 0.0005 2.71 | 0.0103 4
Dow Corning 500; 0.65 cs. .. .. 2.20 | 0.0005 2.20 | 0.00145 4
Ignition sealing compound 4..| 2.80 | 0.0004 2.77 | 0.010 5
4, Polymers:
Bakelite BM 120............ 4.87 | 0.030 3.70 | 0.0438 3.68 [ 0.0390 3
Cibanite E. . ... 3.70 | 0.0038 3.47 | 0.0053 3.47 | 0.0075 1 and 2
Dielectene 100. . 3.62 | 0.0033 3.44 100039 | ..... | ....... 1 and 2
Plexiglas. ................... 3.40 | 0.061 2.60 [ 0.0057 2.59 | 0.0067 1
Polystyrene XM810023. .. ... 2.59 | 0.002 2,55 10.0005 | ..... | ....... 1and 2
Loalin (molding powder)......| 2.50 | 0.001 2.49 (0.00022 { ..... | ....... 1 and 2
Styron C-176................ 2.56 | 0.0008 2.55 | 0.00026 2.54 | 0.0003 1 and 2
Lustron D-276...,........... 2.53 [ 0.0004 2.51 [ 0.00041 | ..... | ....... 1 and 2
Polystyrene D-334........... 2.56 | 0.0006 2.54 | 0.00024 | ..... | ....... 1 and 2
Styramic........ ..o 2.88 | 0.0025 2.65 | 0.00022 2.62 | 0.00023 | 1 and 2
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[SEC. 16

TaBLE 1-1.—PROPERTIES OF DIELECTRIC MATERIALS. *—(Conlinued)

f = 100 cps J =3 X 10° cps J = 101 cps
A=3X10cm | A =10cm A =3cm
Substance Uses
¢ & ¢ & ¢ &
Styraloy 22..... 2.40 | 0.0009 2.40 | 0.0032 2.40 | 0.0024 1 and 2
GE Resin #1421 2.56 | 0.001 2.53 | 0.0005 2.52 [ 0.00056 | 1 and 2
Dow Exp. Plastic Q-200.5....| 2.55 | 0.0009 2.52 | 0.00044 | ..... | ....... 1 and 2
Dow Exp. Plastic Q-385.5.....| 2.51 | 0.0005 2.50 | 0.00063 2.49 | 0.0008 1 and 2
Dow Exp. Plastic Q-409...... 2.60 | 0.0010 2.80 | 0.00087 2.60 | 0.0012 1 and 2
Poly 2, 5-dichlorostyrene D-

1385 .. .. it 2.63 | 0.0005 2.62 | 0.00023 2.60 | 0.00023 | 1 and 2
Thalid X-526-S.. 3.55 | 0.0144 2.93 | 0.0163 2.93 | 0.0159 1 and 2
Polyethylene co..| 2.26 | 0.0006 2.26 | 0.00040 | ..... | ....... 1and 8
Polyethylene M702-R........| 2.25 | 0.0005 2.21 [ 0.00019 | ..... | ....... 1and 8
Polyethylene KLW A-3305....| 2.25 | 0.0005 2.25 [ 0.00022 | ..... | ....... 1and 8
“Teflon" Poly F-1114........ 2.1 0.0005 | 2.1 0.00015 { 2.08 | 0.00037 |1,2,and 8

5. Waxes:
Acrawax C............c.ouue 2.60 | 0.0157 2.48 | 0.0015 2.45 | 0.0019 5
Paraffin wax (135° amp).. 2.25 | 0.0013 2.22 | 0.0001 2.22 | 0.00020 5
Parowax..........ocoveeiic] suiin | et 2.25 | 0.0002 2.25 | 0.00025 5
Cerese wax AA 2.34 | 0.0006 2.29 | 0.00088 | 2.26 | 0.0007 5
Uses:
1. For use as waveguide windows or coax beads, cable fittings.
2. For use as dielectric transformers or matching sections.
3. For use as attenuators or loading materials,
4. For liquid-filled lines.
5. For moistureproofing radar components.
6. For use in vacuum tubes.
7. For capacitor dielectrics.
8. Cable materials.
* Abstracted from Von Hipple e al., “ Tables of Dielectric Materials,”” NDRC 14-237.
and the wave number 3 is
o MFAFz9% o2 sinh—1 z
B=:1— fAJ—a5——— =7 cosh|—F5—), (43a)
Mo 2 *oo 2
2m z?
>—\14+7="---} K1, (43b)
Ago 8
gl 1+1 R A z»1, (43¢)
) 2z
where
2
Xpo = — XO____ T = G” x_giq’
¢ — Ao\? g
A
and

| N T _ |wnes
b V2¢ T.,'o‘/%—‘/_f

The approximations (42b) and (43b) are valid for €'/’ < 1 and o not
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TaBLE 1-2,—ELEcTRICAL CONDUCTIVITIES OF METALS*
7
5 =9.19 X 10 (g) Ao Ineters, Mo in meters.
_ 10y 1 .
® = 10.88 X 1073 \’ (T) x] ohms, Ao in meters.
Eff. cond. o
at
Material A=125em DC cond. ¢ in 107 mhos/m
in
107 mhos/m
Aluminum:t
Pure, commercial (machined sur-
face). . ... o 1.97 3.25 (measured)
178 Alloyt (machined surface). .. . 1.19 1.95 (measured)
248 Alloy (machined surface)..... 1.54 1.66 (measured)
Brass:
Yellow (80-20) drawn waveguide 1.45 1.57 (measured)
Red (85-15) drawn waveguide. .. . 2.22
Yellow round drawn tubing. ... .. 1.36 1.56 (Eshbach)
Yellow (80-20) (machined surface) 1.17 1.57 (Eshbach)
Free machining brass (machine
surface)....... ..., 1.11 1.48 (measured)
Cadmium plate. . ................. 1.04-0.89 |1.33 Hdbk. of Phys. and Chem.
Chromium plate, dull.............. 1.49-0.99 | 3.84 Hdbk. of Phys. and Chem.
Copper:
Drawn OFC waveguide.......... 4.00 5.48 (measured)
Drawn round tubing............. 4.10 4.50 (measured)
Machined surfacef.............. 4.65 5.50 (measured)
Copper plate. ................... 2.28-1.81 |5.92
Electroformed waveguidet........ 3.15 5 .92}Hdbk' of Phys. and Chem.
Gold plate........................ 1.87 4.10 Hdbk. of Phys. and Chem.
Mercury. . ... 0.104 0.104 Hdbk. of Phys. and Chem.
Monel (machined surface)}......... 0.155 0.156 (measured)
Silver:
Coin silver drawn waveguide. . . .. 3.33 4.79 (measured)
Coin silver lined waveguide. .. .... 1.87
Coin silver (machined surface)t. .. 2.66} 4.79 (assumed)
Fine silver (machined surface)t. . . 2.92
Silver plate. .................... 3.98-2 .05} 6.14 Habk. of Phys. and Chem.
Solder, softf............... ... ... 0.600 0.70 (measured)

* Abstracted from E. Maxwell, ' Conductivity of Metallic Surfaces,”” J. Applied Phys., July, 1947.

t Only one sample was tested.

too close to the cutoff wavelength ..
(43¢) apply to a metal, i.e., a strongly conducting dielectric with €'/ /¢' > 1,

and are expressed in terms of the skin depth & rather than €.

The approximations (42¢) and

case the leading term provides a good approximation for most of the
dielectrics and metals encountered in practice.

In each
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Measurements of the loss factor ¢’ and conductivity ¢ at various
wavelengths are displayed in Tables 1-1 and 1-2 for a number of dielectrics
and metals. The conductivity properties of a nonmagnetic metal are

8 T fy T4 s T * [~ ]
+ T t o T
-+ e
! : 1
T 1
7 Iy T -
} f 1
H ZA0-
6 et
: T
=y ot
T 3L
5 . /wc -
—
7:~ AT
[
5l s in-
[77] ; 75
A
Wi
3 ' v |
2 -
L} mumy o
0
1 2 3 4
sinh™! 7
Cosh[T]

F16. 1-7.-—Phase and attenuation functions vs. z.

frequently described by its characteristic resistance &, which is related
to its skin depth 6 and conductivity ¢ by

T
R=nr \/EOi = 10.88 X 103 LAWY ohms,
€0 )\0 g )\o

¢ being measured in mhos per meter, § and Ao in meters.
To facilitate computations of « and 8 a graph of the functions

. -1 H —1
cosh (sm};—x) and sinh <smhz x) is plotted vs. z in Fig. 1.7.
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A complex relative permeability

M ’ s 17

£ = — 44
PP (44)
may be introduced to account for dissipation of a magnetic type. For
a medium of unit relative dielectric constant, the attenuation constant
and wave number may be obtained from Eqgs. (42) and (43) by the replace-
ment of ¢ and ¢’ by u’ and ", respectively. The skin depth & in this

case i
M (20 2
I \NE \/weoam’ (45)

where the conductivity o, accounts for the magnetic type of dissipation.
Extensive tables of the loss factor p” or alternatively the conductivity
om are not as yet available.

The presence of dissipation of both the electric and magnetic type
may be taken into account by introduction of both a complex relative
dielectric constant and a complex permeability, as given by Egs. (40) and
(44). The attenuation constant and wave number may again be obtained
from Egs. (42) and (43) if ¢ and ¢’ therein are replaced by ¢’ — ¢'’u’’
and €'y’ 4 €'u”’, respectively. 1In this case the skin depth & is given by

1
52

!
€

o,

Be=1'2; 6m=\/2-
WHoo WENTm

When the medium is an ionized gas, it may be desirable to introduce a
complex conductivity

-5t (46)

where

o =d — jo’ 47)

to describe both the dielectric and dissipative properties of the medium.
For a medium of unit relative dielectric constant and permeability the
attenuation constant and wave number can be obtained from Egs. (42)
and (43) on the replacement of ¢ and ¢’ therein by 1 — ¢'//we; and
o' /weo, respectively.

The characteristic admittance of a propagating mode in a dissipative
guide follows from the knowledge of the complex propagation constant.
For example, in a dissipative dielectric medium the characteristic admit-
tance for H-modes is given by Egs. (39b), (42), and (43) as

A S
Y = %;‘—00 [cosh (smhz I) — jsinh <s1nh2 x)], (48a)
aq
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2 17
Yg\/:%;‘—;[l—jc‘—";) ‘7] S« (48b)
Y[ o), S» 1 (48¢)
The approximation (48b) is applicable to the case of small dissipation
€’/¢ <1 and A\ not too close to A, whereas the approximation (48c)
applies to the metallic case.

The effect of dissipation in the metallic walls of a uniform waveguide is
described by a complex propagation constant which may be obtained by
explicit evaluation of the complex cutoff wavenumber for the waveguide.
An alternative method particularly desirable for first-order computation
is based on the formula for the attenuation constant

1 dP
a = — -2.—P—d—2-, (49)

where P is the total power flow at z [¢f. Eq. (7)] and therefore —dP is the
power dissipated in a section of waveguide of length dz. Equation (49)
refers to a mode traveling in the positive z direction. From Eq. (49) it
follows that the attenuation constant @ = am due to losses in the metallic
guide walls is

_ 1Re (Zm)[|Hul|* ds
“ = 2Re @)JJIE[ 45 0

where Z, the characteristic impedance of the metallic walls [¢f. Eq.
(48¢)] is approximately the same for both E- and H-modes, and Z is the
characteristic impedance of the propagating mode under consideration.
In first-order computations Huw, and H, are set equal to the nondissipa-
tive values of the magnetic field tangential to the guide periphery and
transverse to the guide cross section, respectively. The line integral
with respect to ds extends over the guide periphery, and the surface
integral with respect to dS extends over the guide cross section.

The tangential and transverse components of the magnetic field of an
E-mode can be expressed in terms of the mode function ® defined in Eqgs.
(3) of Sec. 1:2. Hence by Egs. (6), (9a), (48¢c), and (50) the attenuation
constant of a typical E-mode in an arbitrary uniform guide with dissipa-
tive metallic walls is to a first order (omitting modal indices)

5% x| Jj7dS (50a)

where ® = k{8/2 is the characteristic resistance of the metallic walls as
tabulated in Table 1-2, and the derivative with respect to » is along the
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outward normal at the guide periphery. The magnetic field components
of a traveling H-mode can be expressed in terms of the mode function ¥
defined in Eqgs. (4) of Sec. 1:2. Thus by Egs. (6), (9b), (48¢), and (50)
the attenuation constant of a typical H-mode in an arbitrary uniform
guide with dissipative metallic walls is to a first order (omitting modal

indices)
LAWY
K ds s n k[ ds
k| k2f[9rdS T «3f[wrdS])

where the derivative with respect to s is along the tangent to the guide
periphery. A useful alternative to Eq. (50a) for the attenuation con-

stant of an E-mode is
1Rk 1 8k2
“”25?1[_EE]’ (50c)

where ék?/8v represents the variation of the square of the mode cutoff
wave number k. with respect to an infinitesimal outward displacement
of the guide periphery along the normal at each point. Equation (50c)
permits the evaluation of the E-mode attenuation constant by simple
differentiation of k2 with respect to the cross-sectional dimensions of the
guide. Although there is no simple dependence on £?, the corresponding
expression, alternative to Eq. (50b), for the attenuation constant of an
H-mode may be written as

Qm

1®
=37 (50b)

_ L&k 10k (R f
R H R R SA] ©0D
where the factor
av\)’
]G
Tk ¥ dS

must be obtained by integration.

Explicit values for a. are dependent upon the cross-sectional shape
of the waveguide and the mode in question; several first-order values are
indicated in Chap. 2 for different guide shapes. The corresponding
first-order values for the wave number 8 are the same as in the non-
dissipative case. The attenuation constant due to the presence of
dissipation in both the dielectric and metallic walls of a waveguide is to a
first order the sum of the individual attenuation constants for each case.

With the knowledge of the complex propagation constant v and the
complex characteristic impedance Z to be associated with losses in either
the dielectric medium or metallic walls, a transmission-line description of
a propagating mode in a dissipative guide can be developed in close
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analogy with the nondissipative description of Secs. 1-3 and 1-4. In
fact, the two descriptions are formally the same if the « of Secs. 1-3 and
1-4 is replaced by —jy. This implies that an impedance description for
the dissipative case is based on the standing waves

cosh vz and sinh vz

and leads to a relation DLetween the relative admittances at the points
z and z¢ of the form
_ 1 4 Y'(z) coth v(zg — 2)

Y& = ot = 2 + Yz 1)

rather than the previous form employed in Eq. (18). The circle diagram
of Fig. 1:3 can again be employed to facilitate admittance computations;
however, Eq. (51) can no longer be interpreted as a constant amplitude
rotation of Y'(z0) into Y’ (2).

A special case of Eq. (51) with practical interest relates to a short-
circuited dissipative line [Y’(2y) = «}; in which case

v _ coth ol ese? Bl — j cot Bl csch? od
Yiz) = cot? B + coth? ol ’ (52a)
Y'(2) = ol ese® Bl — 7 cot g, al < 1, Bl 5 nx, (52b)

where
v = a + j8, l =2z, — 2

Relative values of input conductance and susceptance are indicated in
these equations and are to be distinguished from the absolute values,
since the characteristic admittance is complex. The approximation
(52b) applies when of <'1. For dissipation such that ol > 3, Eq. (51)
states in general that Y’(z) = 1 independently of the value of Y’(z,).

Although Eq. (51) provides a straightforward means for admittance
computations in dissipative transmission lines, such computations are
tedious because of the complex nature of the propagation constant. In
many practical problems dissipative effects are slight and hence have a
small, albeit important, effect on admittance calculations. For such
problems a perturbation method of calculation is indicated. In this
method one performs an admittance calculation by first assuming the
propagation constant to be purely imaginary, i.e., v = j@ as for the case of
no dissipation; one then accounts for the presence of dissipation by
adding the admittance correction due to a perturbation « in 4. Thus in
the case illustrated in Eq. (52b) one notes that the input admittance of a
short-circuited length of slightly dissipative line is the sum of the unper-
turbed admittance Y, = coth j8l and the correction (dY,/dy) « due to the
perturbation « in 7.

Equivalent-circuit representations of Eq. (51) can be obtained from
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those in Sec. 1-3 (¢f. Fig. 1-4) by the replacement of « therein by —jy.
Another useful representation of the equivalent network between the input
and output points of a dissipative line of length I consists of a tandem
connection of a nondissipative line of electrical length 8! and a beyond
cutoff line of electrical length —jal, the characteristic impedances of
both lines being the same as that of the dissipative line.

The scattering description of a propagating mode in a dissipative
guide is based on wave functions of the type

e and etre,

These functions represent waves traveling in the direction of increasing
and decreasing z, respectively, and attenuating as e 7. A mode
description can therefore be expressed in terms of an incident and reflected
wave whose voltage amplitudes Vi and Vs are defined as in Egs.
(26) with « replaced by —jv. A reflection coefficient,

D) = 72 g, (53)

ing

may likewise be defined such that at any two points z and 2,
T(2) = I'(zg)e¥r—=0, (54)

However, the total power flow at z is now given by

P = Re (VI*) = P, (1 — T2 — 2r; ;) (55)

where
P_mc - YTIVincI2 e—2a(z—5u)‘

The subscripts r and ¢ denote the real and imaginary parts of a quantity,
and Y is the complex characteristic admittance for the mode in question.
From Eq. (55) it is evident that for dissipative lines |T'|? can no longer
be regarded as the power-reflection coefficient. Moreover, |T'| is not
restricted to values equal or less than unity. The meaning of I' as a
reflection coefficient can ? retained if the voltage and current on the
dissipative line are defined so as to make the characteristic admittance
real; in this event Eq. (155) reduces to the nondissipative result given in
Eq. (28).

b. Waveguides beyond Cutoff.—The voltage and current amplitudes of
a higher, or nonpropagating, mode in a waveguide are described by the
transmission-line equations (39). In the absence of dissipation the
propagation constant is real and equal to

2 A\
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The nondissipative decay of the mode fields in decibels per unit length
(same unit as for A.) is therefore

54.57 A
. 1—(9, A > (57

At low frequencies the rate of decay is independent of A, the wavelength
of field excitation, and dependent only on the geometry of the guide
cross section. Values of the cutoff wavelength A, are given in Chap. 2
for several waveguide modes and geometries.

The characteristic impedance of a beyond-cutoff mode (i.e. A > A,
may be obtained from Eqs. (39b) and (56) as

Z = )l/ = ] ’J——g‘z:l fOI' H—modes,
&) - (58)

2= 5 J(AY =1 tor Bmod
=3 = ~# V% , or E-modes,

and is inductive for H-modes, capacitive for E-modes.

The knowledge of the propagation constant and characteristic
impedance of a beyond-cutoff mode permits the application of the trans-
mission-line analysis developed in Secs. 1-3 and 1-4, provided « therein is
replaced by —jv (v real). The impedance description is given by Eq.
(51), and the scattering description by Eq. (54). Several modifications
resulting from the fact that v is real and Z is imaginary have already
been discussed in Sec. 1-6a.

The presence of dissipation within the dielectric medium or the walls
of a beyond-cutoff waveguide introduces an imaginary part into the
propagation constant v. If dissipation is present only in the medium and
is characterized by a complex dielectric constant, as in Eq. (40), we have
for the propagation constant v = « + j8

<y L

2r sinh—! z

a = —);) COSh ("T)) (59&)
~ 2 2 ¢’
o Py (1 + 3 ): 7 L1, (59b)
and

2r . sinh—! z

B = Noo smh( 5 >, (60a)

a0 o2 ¢’
=k560 2 ), <1, (60b)
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where

A Az
Mo = ———re gz = 80

l—e'&2 &
Ao

The approximations (596) and (60b) apply to the case of small dissipation
with ¢’//¢ << 1 and X not too close to A.. Equations (59) and (60) for a
beyond-cutoff mode and Egs. (42) and (43) for a propagating mode differ
mainly in the replacement of the attenuation constant of the one case by
the wave number of the other case and conversely. This correspondence

.%
z 5, o r
AN

Side view Side view

«Nn
SR T

L

oy

Top view Top view
{@) cylindrical (b) Sectoral
F1a. 1-8.—Radial waveguides.

between the two cases is general and applies as well to the other types of
dissipation mentioned in Sec. 1-6a.

1.7, Field Representation in Nonuniform Radial Waveguides.—Non-
uniform regions are characterized by the fact that cross sections trans-
verse to the transmission direction are similar to but not identical with
one another. A radial waveguide is a nonuniform cylindrical region
described by an r¢z coordinate system; the transmission direction is
along the radius r, and the cross sections transverse thereto are the ¢z
cylindrical surfaces for which r is constant. Typical examples of radial
waveguides are the cylindrical and cylindrical sector regions shown in
Figs. 1-8a and b.

In the r¢z polar coordinate system appropriate to the radial wave-
guides of Figs. 1-8, the field equations for the electric and magnetic field
components transverse to the radial direction r may be written as
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oB. . [ 1(1092H, o°H,
ar - IR | H¢+P(;0¢6z 922 ]’ (61a)
19 . 1(10H, 16%H,
7o (B = —JkE | H: + (;—2—34,2 7 3¢ 02 ]
and
oH, . | 1(3E, 1 3E.
ar = k[ s+ 1?2( a2 Tod az)]’ (616)
19 . _ 1 (193, 13,
ror (He) = J""[ Eﬁp(?@ = a¢z>]'
The radial components follow from the transverse components as
. _1leH, oH,
jweE, = _W 3z ]
g, = LB _ 3B, o
JWsts = 56 oz

A component form of the field equations is employed because the left-hand
members of Egs. (61) cannot be written in invariant vector form. The
inability to obtain a transverse vector formulation, as in Egs. (1),
implies, in general, the nonexistence of a field representation in terms of
transverse vector modes. The transverse field representation in a radial
waveguide must consequently be effected on a scalar basis.

For the case where the magnetic field has no z-component, the
transverse field may be represented as a superposition of a set of E-type
modes. The transverse functional behavior of an E-type mode (cf. Sec.
2-7) is of the form

(63)

where the mode indices m and n are determined by the angular aperture
and height of the cylindrical ¢z cross section of the radial guide. The
amplitudes of the transverse electric and magnetic fields of an E-type
mode are characterized by a mode voltage V} and a mode current I..

For the case of no z component of electric field, the fields can be repre-
sented in terms of a set of H-type modes whose transverse form, as shown
in Sec. 2.7, is likewise characterized by functions of the form (63). The
voltage and current amplitudes of the transverse electric and magnetic
field intensity of an H-type mode are designated as V! and I7.

For the case of a general field both mode types are required, and these
are not independent of one another. Incidentally, it is to be emphasized
that the above classification into mode types is not based on the trans-
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mission direction. Relative to the r direction all modes are generally
hybrid in that they possess both an E, and an H, component, {(cf. Sec. 2:7).

On substitution of the known transverse functional form of the modes
into Egs. (61) there are obtained the transmission-line equations

dv

—— = —gxZI

d )

dTI . (64a)
-CE: = —]KYV,

for the determination of each of the mode amplitudes V and I. Because
of the identity in form of the equations for all modes, the distinguishing
sub- and superscripts have been omitted. The characteristic impedance
Z and mode constant k are given by

s i for the E-type modes,
1 xk (64b)
=y =1irs N for the H-type modes,

)6 ()

where N’ and N/ are constants dependent on the cross-sectional dimen-
sions of the radial waveguide and the definitions of V and I (¢f. Sec. 2-7).

Because of the indicated variability with r of the propagation con-
stant and characteristic impedance, Eqs. (64a) are called radial transmis-
sion-line equations. Correspondingly the mode amplitudes V and I are
defined as the rms mode voltage and current; they furnish the basis for
the reformulation of the field description in impedance terms. The vari-
ability with r of the line parameters implies a corresponding variability
in the spatial periodicity of the fields along the transmission direction.
The concept of wavelength on a radial line thus loses its customary
significance. _

Impedance Description of Dominant E-type Mode.—In practice, the
frequency and excitation of the radial waveguide illustrated in Fig.1-8a
are often such that, almost everywhere, only the dominant E-type mode
with m = 0 and n = 0 is present. The field configuration of this trans-
verse electromagnetic mode is angularly symmetric with E parallel to the
z-axis and H in the form of circles about the z-axis. The transverse mode
fields are represented as
H(r,02) = 10 g

El(ry ¢72) =
(65)
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where z, and ¢, are unit vectors in the positive z and ¢ directions. The
mode voltage V and current I obey Eqgs. (64a) with« = kand Z = {b/2xr
(cf. Sec. 2°7). On elimination of I from Egs. (64a) the wave equation for
V becomes

1d/( dv

The two independent, standing-wave, solutions of this equation are the
Bessel functions
Jolkr) and No(kr),

wherein it is to be emphasized that A = 2r/k does not in general imply
the existence of a fixed wavelength along the direction of propagation.

The impedance description of the E-type radial line is based on the
above standing-wave solutions; the voltages and currents at the points r
and r, follow from Eqs. (64a, b) as

V(r) = V(ro) Cs(y) — §Zal(re) sn(z,y>,} -
ZI(r) = Zol(ro) cs(z,y) — jV(ro) Sn(z,y),
where
Ca(ag) = LONE) = N)I1)
ex(ng) = NADT) — SN ),
Sn(rg) = LONE) — Ni)@),
an(e) = LX) = Na) o)

r = kr, y = kro,

and Z = tb/2xr and Z, = tb/2wre are the characteristic impedances
I Itry) at r and ro, respectively. These

—_— —_— .
voltage-current relations may be

z % Za schematically represented by the
radial transmission-line diagram
l —= of Fig. 19, which also shows the

positive directions of V and I.
Vi) Vi) Equations (67) may be con-
T ” verted to a more convenient form

Fie. 1-9.—Choice of positive directions of DY introduction of the relative, or
voltage and current in a radial transmission normalized, admittances

line.
_ ZQI(T()) _ Y(To)
- V(To) - Yo

ZI(r) _Y(n)
Vi) Y

Y'(r) = and Y'(ro) (68)
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at the radii » and ro; these admittances are positive in the direction of
increasing radius. By division of Eq. (67) one obtains the fundamental
radial transmission-line relation for the lowest E-type mode as

Y’(T) - .7 + Y’(TU) f(xry) Ct(I;y)

= Gy 4 7 0t my) (69)
where
ety = D@V = Ni@ow) _ 1 os@y)
Y= 1@ Noy) — No(@)Jo(y)  tn(z,y)  —sn(z,y)

Ji@Ny) — Ni(@)1(y) ~ Tny) —Sn(zy)
_ Jo(@)Noly) = No(z)Joly) _ _ sn(z,y)

$@Y) = S ON@) = M@~ %P = @)
and

z = kr, y = kro.

The ct and Ct functions are called the small and large radial cotangent
functions; their inverses tn and Tn are the small and large radial tangent
functions. The radial functions are asymmetric. The nature of the
asymmetry is evident in the relation

Ct(I;y) g‘(zry) = __Ct'(y)z), (71)

which may be employed to obtain alternative forms of Eq. (69).

The radial functions are plotted vs. y — z with y/z as a parameter in
the graphs of Figs. 1-10 to 1-12. The curves of Figs. 1-10a and 1-1la
apply when y is less than x, whereas those of Figs. 1-10b and 1-11b are
for y greater than z. The symmetry of the functions {(z,y) permits the
use of the single graph of Fig. 1-12, for both ranges of y/z. In addition
to the graphs numerical values of the radial functions are given in Tables
13 for several values of y/x. These tables are incomplete, as many of
the data from which the curves were plotted are not in a form convenient
for tabulation.

The parametric values y/z = 1, but ¥ — z finite, correspond to the
case of large radii. In this range ct(z,y) = Ct(z,y) = cot(y — z), and
{(z,y) = 1. Thus at large radii the radial and uniform transmission-
line equations (69) and (18) are asymptotically identical. The transmis-
sion equations (69) permit the determination of the relative admittance
at the input of a line of electrical length y — « from a knowledge of the
relative admittance at the output. A few examples will serve to illus-
trate both the use of Eq. (69) and the physical significance of the radial
cotangent functions.
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TaBLE 1-3a.—VaLUEs oF THE Rapiar Funcrions
_ Ju(@No(y) — No(@)Jo(y)

FE0) = F@Niw = Ny
v/ 2 3 4 5 6 8 10 20
V- x
0
0.1 0.9242 0.8239] 0.7393 0.6701 0.6142 0.5279| 0.4653 0.3003
0.2 0.9240 0.8236| 0.7388 0.6700 0.6137 0.5275| 0.4644 0.2997
0.3 0.9238 0.8231 0.7382 0.6692 0.6128| 0.5266| 0.4635
0.4 0.9234 0.8224| 0.7370 0.6682 0.6117 0.5253 0.4624 0.2979
0.5 0.9230 0.8215| 0.7361 0.6670 0.6102 0.5235| 0.4607
0.6 0.9225 0.8203| 0.7345 0.6650 0.6083 0.32217) 0.4587 0.2947
0.7 0.9218 0.8190{ 0.7326 0.6630| 0.6060 0.5193] 0.4563
0.8 0.9210 0.8173| 0.7304 0.6604 0.6034] 0.5165 0.4535 0.2902
0.9 0.9201 0.8154| 0.7280 0.6575 0.6003 0.5135] 0.4502
1.0 0.9190 0.8132] 0.7250 0.6542 0.5969 0.50951 0.4464 0.2841
1.1 0.9178 0.8107| 0.7217 0.6504 0.5926 0.5052] 0.4422
1.2 0.9164 0.8078| 0.7179 0.6461 0.5880 0.5002| 0.4373 0.2763
1.3 0.9148 0.8046{ 0.7136 0.6410 0.5827 0.4948] 0.4318
1.4 0.9130 0.8008, 0.7087 0.6356 0.5768 0.4886] 0.4256 0.2663
1.5 0.9109 0.7966! 0.7032 0.6296 0.5700 0.4815| 0.4187
1.8 0.9085 0.7917| 0.6968 0.6220 0.5624 0.4736| 0.4109 0.2540
1.7 0.9057 0.7861 0.6895 0.6138 0.5538 0.4648| 0.4020
1.8 0.9025 0.7797] 0.6812 0.6046 0.5439 0.4546| 0.3920 0.2386
1.9 0.8987 0.7722| 0.6716 0.5938 0.5327 0.4431 0.3808 0.2292
2.0 0.8942 0.7635] 0.6606 0.5815 0.5197 0.4299] 0.3676 0.2188
2.1 0.8890 0.7532] 0.6476 0.5671 0.5048| 0.4148| 0.3532
2.2 0.8826 0.7410) 0.6322 0.5503 0.4873 0.3972| 0.3363 0.1937
2.3 0.8748 0.7261 0.6138 0.5303 0.4667 0.3768) 0.3165
2.4 0.8649 0.7079| 0.5914 0.5062 0.4421 0.3523 0.2034 0.1607
2.5 0.8523 0.8848| 0.5637 0.4767| 0.4122 0.3237| 0.2660
2.6 0.8354 0.6549] 0.5284 0.4397 0.3751 0.2882 0.2328 0.1156
2.7 0.8116 0.6145| 0.4821 0.3921 0. 3280 0.2440| 0.1920
2.8 0.7760 0.5570| 0.4186 0.3284 0.2662 0.1874] 0.1394 0.05050
2.9 0.7163 0.4688] 0.3261 0.2388 0.1814 0.1121 0.07212
3.0 0.5960 0.3156| 0.1789 0.1036 0.0578 0.0058| —0.01829| —0.05201
3.1 0.2271 —0.0159| —0.09289| —0.1248] —0.1395 —0.1501| —0. 1408
3.2 21.419 —1.2767 —0.7641 —0.5940| —0.5057, —0.4071| —0.3561 | —0.2391
3.3 1.5745 6.2225/ —5.1963 —2.1200] —1.4237] —0.9208/—0 7277
3.4 1.2953 2.0733 4.1385 23.0896| —8. 0395 —1.2394|—-1.6024 | —0.7001
3.5 1.1815 1.5505 2.1136 2.9965 4 8423] 248 085 [—6. 1984
3.6 1.1239 1.3451 1.6193 1.9537 2.3711 6. 4870 | —3_8555
3.7 1.0890 1.2350 1.3953 1.5645 1.7431 2.6020
3.8 1.0654 1.1659 1.2668 1.3638 1.4348 L7831 2.4796
3.9 1.0484 1.1183 1.1829 1.2394 1.28R82 L1251
4.0 1.0354 1.0832 1.1234 1.1549 1.1788 2230 1.1863
4.1 1.0251 1.0560 1.0786 1.0930 1.1007 017
4.2 1.0166 1.0342 1.0434 1.0452 1.0415 RIEYY 0.8549
4.3 1.0094 1.0160 1.0145 1.0066 0.9946
4.4 1.0031 1.0000[ 0.9900 0.9745| 0. 9558 0.6961
4.5 0.9976 0.9867| 0.9688 0. 9468 00228
4.6 0.9925 0.9743| 0.9408 0.9223 08938 0, 5971
4.7 0.9878 0.9629] 0.9324 0.900 0. R676 (LI (U110
3n/2 0.9869 0.9614 0.9302 0.8975 0.8654 0. 8008 05540
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TaBLE 1-3b
et(z,y) = Ji@)No(y) — Ni(z)Jo(y)
’ Jo(zZ)No(y) — No(z)Jo(y)
vz 9 3 ' 5 6 8 10 20
vV—z
0.1 14,3029 18.1697| 21.6088 | 24.8284 | 27.8666 | 33.5884| 39.0408
0.2 7.1454 9.0320] 10.7497 12 3512 13.8747 16.7351 19 4556 31.6025
0.3 4.7064 5.9623 7.1037 8.1707 9.1843 11,0954 12.8982
0.4 34694 4.4092 5.2645 6.0610 6.8188 8.2481 9.5942 15.6326
0.5 2.7128 3.4623 4.1419 4.7769 5.3827 8.5234 7.5932
0.6 2.1955 2.8155] 3.28%0 3.9102 4.4108 5 3553, 6.2439 10,2299
0.7 1.8149 e 2.3462] 2.8277 3.2763 3.7034 4.5071 52636
0.8 1.5190 1.9814 2.4003 2.7904 3.1607 3.8540 4.5159 7.4615
0.9 1.2790 1.6874 2.0566 2.4006 2.7270 3.3403, 3.9197
1.0 1.6775 1.4423 1.7717 2,078t 2.3686 2.5157, 3.4302 5.7380
1.1 0.9031 1.2318 1.5280 1.8033 2.0641 25559, 3.0163
1.2 0.7483 1.0464 1.3143 1.5632 1.7988 2.2421 2.6583 45250
1.3 0.6075 0.8793|  1.1220 13490 | 1.5625 19843 2.3410
1.4 0.4767 0.7264 0.9475 1.1531 1.3473 1.7120 2.0544 3.5895
15 0 3525 0.5%08| 0.7832 |  0.9707 1.1474 1.4787] 1787
1.6 0.2321 0.4413: 0.6264 0.7970 0.9576 1,2581 1.5405 2.8038
1.7 0.1130 0.3048 0.4733 0.6282 0.7736 1.0455 1.3003
1.8 —0.007287 0.1679; 0.3206 0.4603 0.5912 0.8360) 1.0637 2.0860
19 —0.1315 0.02735 0.1647 0.2394 0.4059 0.6228] 0.8249
2.0 ~0.2628 —0.1199! 0.00157 0.1109 0.2126 0. 40091 05755 1.3537
21 —0.4051 —0.2789] —0.1741 —0.0809 0.004948! 0. 1626 0.3082
2.2 —0.5636 —0.4555] —0.3689 ~0.2938 -0.2256 —0.1025 0.01050 0.5030
23 —0 7458 —0.6584| —0.5931 —0.5390 —0.4916 —0.4097 —0.3359
24 —0 9627 —0.8005) —0.8616 —0.8340 —0.8130 —0.7868) —0.7608 -—0.6994
25 —1.2328 —1.2036] —1.2001 —1.2086 —1.2239 —1.2647] -1.3171
28 —1.5875 —1.6061 —1.6550 —1.7178 —1.7890 —1.9441} -2.1135 —3.0338
27 —2.0885 —2.1851] —2.3221 —~2.4798 —2.6498 —3.0162 —3.4100
28 —2.8729 —3.1208) —3.4378 —3.7963 —4 1879 —5.0572{ —6.0831 | —12 8084
2.9 —4.3235 | —4.9503] —5.7809 | —6.7639 | —7.9139 | —10 8406 —15 0410
3.9 —8.0875 —10.4990; —14.3840 | —20.7680 | —32.5992 |—272.075 76.1741 20.4216
31 —44 0149 340.55 41.0035 24,3027 185507 13.9023 12,1482
32 13.3283 10.4135 8.9151 8.0858 7.5960 7.1330 6.9363 7.3531
33 5.8266 5.3617 5.0012 4.9478 4.8821 4. 8825 4.9673
3.4 3.7146 3.6158| 3.5801 | 3.5803 |  3.6272 3.8418)  3.9108 |  4.8215
3.5 2.7030 2.7180]  2.7563 2.8574 |  2.8002 3.0581)  3.2393
36 2.0993 2. 1558 2.2282 2.3002 2.3962 2.5785] 2.7655 3.6737
3.7 1.6012 1.7683 1.8541 1.9435 2.0354 2.2209 2.4066
3.8 1.3915 1.4794 1.5701 1.8625 1.7555 1.9390 2.1204 2 9627
3.9 1.1580 1.2503 1.3430 1.4357 1.5276 1.7085 1.8829
4.0 0.9674 1.0613 1.1540 1.2455 1.3354 1.5120 1.6789 2 4502
4.1 0.8061 0.8999 0.9914 1.0808 1.1682 1.3375 1.4992
4.2 0.66851 0.7579 0.8475 0.9344 1.0190 1.1816 1.3370 2.0398
4.3 0.5386 0.6297, 0.7169 0 8011 0.8828 1.0386 1.1874
4.4 0.4222 0.5112 0.5958 0.6770 0.7553 0.9048) 1.0467 1.6838
4.5 0.3128 0.3994 0.4304 0.5592 0.8342 07765 0.9121
4.6 0.2078 0.2917] 0.3703 0.4451 0.5188 0.6530] 0.7808 1.3521
4.7 0.1049 0. 1859, 0.2613 0.3327 04008 0.5297, 0.6505
3x/ 0.09215 0.1708, 0.2479 0 3182 0.3864 0.5154 0.6340 1.1676
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TaBLE 1-3b.—(Continued)
1y 2 3 4 5 [} 8 10 20
y=z
-3.0 8.231 10.59 19.6
-2.8 3.107 3.448 4.124
-2.6 1.849 2.012 2.272
—2.4 1.253 1.3633 1.521
-2.2 0.8833 0.9752 1.093
-20 0.6172 0.7017 0.8025
-1.8 0.4032 0.4864 0.5803
-1.6 02148 0.3012 0.3942
-1.4 0.03534 0.1286 0 2254
-1.2 —0.1498 | —0 0456 0.06014
-1.0 —0.3581 | —0.2370 —0.1164
—0.8 —0.6190 | —0.4712 —0.3254
—0.6 —0.9944 | —0.8000 —0.6114
—0.4 —1.867 —1.378 —1.099
-02 —3.538 —2.967 —2.416
TasLE 1.3¢
Tn(: y) _ Jl(I)Nl(y) b Nl(I)Jl(y)
’ J1(y)No(z) — Ni(y)Jo(2)
|y 3 5 © 2 3 5 6
y—-2 i
-3.0 0.2109| 03020 0 4644] 13037 0 0 0 0 0
-2.8 0.4486| 05753 0.8023| 2.2145 0.2 0.3058| 0.4004| 06180 0 7228
—28 0.7544| 09510 1.323| 4.8636 0.4 0.6497| 0.8824| 1.361 | 1.605
—2.4 1.201 | 1.569 | 2.369 | 208.08 06 1.0003| 1.524| 2.460| 2.958
—22 2.012| 2961 | 6.189 | —5.0362 0.8 1754 | 2600 4.654| 5873
-2.0 4.256 | 10922 [—155 | —2.5757 1.0 3038 | 65.189 | 13.133 | 20.93
-18 140.9 | —7.634 | —3 593 | —1.7102 1.2 7288 | 2716 |—2574 |—18.42
~1.8 —4.74 | —2863 | —2.017 | —1.2514 1.4 ~31.00 | —9.708 | —6.979 | —6.782
-1.4 —2.207 | —1.721 | —1.365 | —0.9559 1.6 —5123 | —4.192 | —4.078 | —4 424
-12 —1.458 | —1.183 | —0.9901| —0.7425 18 —2.749 | —2.636 | —2.850 | —3.007
-1.0 —1.0097| —0.8524| —0 7354| —0 5751 2.0 —1.811 | —1.865 | —2.142 | —2.207
—0.8 —0.7148] —0.6175] —0.5432] —0 4357 2.2 —1282 | —1.384 | —1.662 | —1.806
—0.8 —0.4972| —0.4324| —0 3841 —0.3143 2.4 —0.9229| —1.036 | —1.209 | —1.430
~0.4 —0.3274| —0.2757) —0.2469| —0.2041 26 —0.6473| —0.7593) —1.001 | —1.119
—-0.2 —0.1514] —0.1344 —0 1005 28 —0.4150| —0 5206| —0 7390| —0.8446
3.0 —0.2036| —0.2907| —0.4937| —0.5863

The relative input admittance of an E-type radial line
length y — 2 with a short circuit {Y'(ro) = e] at its output

tance is

Y'(r) = —jct(z,y).
For an open circuit [Y’(ro) = 0] at the output the relative input admit-

Y'(r) =3

1

of electrical
end is

(72)

(73)




42 TRANSMISSION LINES [SEC. 1-7

For an infinitely long E-type line the relative input admittance at any
point r, looking in the direction of increasing radius, is found from Xq. (69)
by placing Y'(r) = 1 and ry =  to be

HE (kr)

Y’(T) = —7 ‘HW}

(74)

or
Yrm=i for kr> 1,

ron o~ TR 2
Z(T)ZT +]krln7——kr for kr < 1,

where y = 1.781. The input admittance of an infinite radial line is not
in general equal to the characteristic admittance! For E-type lines it is
seen to be complex with a negative imaginary, i.e., inductive, part. The
relative input admittance looking in the direction of increasing radius is,
for all noninfinite Y'(0),

Yy = ~i 70, %)

or

Y'(r) = —j tan (kr - Z) for kr> 1,

Y'(r) = —jlg for kr < 1.

The relative input admittance is negative imaginary and hence capacita-
tive; it is to be remembered that the output is at a smaller radius than the
input and hence the input admittance is counted negatively.

Yi, Zn=2x2 Z32-212
—AAAAM— —~AAAAAA—
Y oOS%-%, Y-ty b z Ze %
r 7 T T
(a) (]

Fi1¢. 1-13.—(a) w-Circuit representation of an E-type radial line of electrical length y — z;
(b) T-circuit representation of an H-type radial line of electrical length y — .

An alternative method of determining the relation between the input
and output admittances of a radial line is afforded by the equivalent cir-
cuit representation for a length y — z of line. From Eq. (67) one finds
that the parameters of the = circuit representation (cf. Fig. 1-13a) of the
E-type radial line are




Sec. 1-7] NONUNIFORM RADIAL WAVEGUIDES 43

Yiu— Y= —jY [Ct(x;y) + \/g CSt(x;y):l’

76
Yoo — Yo (76)

i

—jY [— et(y,x) + \% cst(-’v,y)],

Yie = —j V' YYocst(z,y),
where
1 + ct(z,y) Ct(z,y)
{(zy)
The cst function may be termed the radial cosecant function since in the
limit of large z and y it becomes identical with the ordinary cosecant
function.

A useful formula for perturbation and frequency-sensitivity calcula-
tions, particularly in resonant radial structures, can be obtained from the
differential form of Eq. (69). The differential change dY’(r) in relative
input admittance arising from either a change dY’(ro) of relative output
admittance or a relative change dk/k in frequency, or both, is given by

ay’'(r) . Y'(r) }@)a
<1 T [jY'(r>12+{J”lﬂjr(rnz k)

(A [ Y )
= (5 * b+ o] ) =0, @

cst?(z,y) =

where
a) = I LEGY@E

mkr [J1(kr) — 3Jo(kr)Y'(r)]2
For large kr and kro the ratio a(ro)/a(r) approaches unity, and hence in
this range Eq. (77) and the corresponding uniform-line equation (23)
become asymptotically identical. With a short circuit at ro the right-
hand member of Eq. (77) simplifies to

2

o+t 2
[dZ (ro) + Jy % | 72w (78)
Scattering Description of Dominant E-type Mode.—The scattering
description of the dominant E-type mode in the radial guide of Fig. 1-8a
is based on the traveling-wave solutions
HP (kr) and HP(kr)
of the radial-wave equation (66). The Hankel function solutions H®
and H{" represent waves traveling in the direction of increasing and
decreasing radius and are the analogues of the exponential functions
encountered in uniform lines. In terms of these functions the solutions
of the radial transmission-line equations (64) for the dominant mode volt-
age and current can be written as '
V(r) = VadHP(kr) + ViaHP (kr),
GZI) = VieH®(kr) + ViaHP (k7),

(79)
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where Vi and V,.s are the complex amplitudes of the incident and
reflected waves traveling in the direction of increasing and decreasing r,
respectively. The analogy with the uniform line Egs. (26) becomes
more evident by use of the relations

HY(x) = (=j)mhmeti™,  HR(z) = ()"hme ™, (80)

where

_ Na(@
= v_——__—__ m = m——r '
ho = VTL@) F No@),  mm= G+ tan” T

The amplitude k. and phase 7. of the Hankel functions are plotted and
tabulated as functions of z for

A" m = 0 and 1 in Fig. 1-14 and in
IE\J ax Table 1-4.
A convenient measure of the
104 ¥ "o vq\tage and current at any point
" r is obtained on introduction of a
™ reflection coefficient defined as the
s » ratio of the amplitudes of the
W reflected and incident waves.
P T 7 1 % There exist two types of reflection
. coefficients: a voltage reflection
coefficient
F1a. 1-14.—Amplitude and phase of Hankel Vet HY (kr Viea .
functions of order zero and one. Tv(r) = Vi EET’EEF} = ——in—: gi2no(kr)
(81a)
and a current reflection coefficient
Veea HP(kr) Vet .
= L VT T pitmikr)
Ti(r) Voo HO(kr) v . (81b)

In contradistinction to the case of a uniform line the voltage and current
reflection coefficients are not negatives of each other.

The fundamental radial transmission-line equations for the reflection
coefficients at any two points 7 and r, of an E.type line follow from Egs.
(81) either as

Ty(r) = Ty(ro)eitlmtn—mdml (82a)
or as
Ti(r) = Tulro)erin kn—m ko], (820)

By division of Egs. (79) the relation between the admittance and reflec-
tion coefficient at any point r is seen to be

Y_
1—-TIv
] . 1+F1 . Y+
Y+(T) = 1 + va bl 1 + I‘V (830)
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TaBLE 14
z ho(z) | hi(x) no(z) n1(z) Jo(z) Jo(tz) Ji(x) | —iJ.(iz)
0 —90° 0° 1.0000 1.0000| 0.0000 0.0000
0.1 1.830 | 6.459 | —57.0 0.5 0.9975 1.0025 0.0499 0.0501
0.2 1.466 | 3.325 | —47.5 1.7 0.9900 1.0100{ 0.0995 0.1005
0.3 1.268 | 2.298 | —39.5 3.7 0.9776 1.0226| 0.1483 0.1517
0.4 1.136 | 1.792 | —32.3 6.3 0.9604 1.0404| 0.1960 0.2040
0.5 1.038 { 1.491 | —25.4 9.4 0.9385 1.0635 0.2423 0.2579
0.6 0.9628 1.283 | —18.7 12.8 0.9120 1.0420| 0.2867 0.3137
0.7 0.9016( 1.151 | —12.2 16.6 0.8812 1.1263| 0.3290 0.3719
0.8 0.8507) 1.045 | — 5.9 20.7 0.8463 1.1665, 0.3688 0.4329
0.9 0.8075 0.9629| — 0.4 24.9 0.8075 1.2130 0.4060 0.4971
1.0 0.7703{ 0.8966 6.6 29 .4 0.7652 1.2661| 0.4401 0.5652
1.1 0.7377| 0.8421 12.7 34.0 0.7196 1.3262| 0.4709 0.6375
1.2 0.7088| 0.7963 18.8 38.7 0.6711 1.3937, 0.4983 0.7147
1.3 0.6831 0.7572 24 .8 43 .6 0.6201 1.4693; 0.5220 0.7973
1.4 0.6599 0.7234 30.8 48.5 0.5669 1.5534; 0.5420 0.8861
1.5 0.6389 0.6938 36.8 53.5 0.5118 1.6467, 0.5579 0.9817
1.6 0.6198 0.6675 42.7 58.6 0.4554 1.7500 0.5699 1.0848
1.7 0.6023| 0.6441 48.6 63.8 0.3980 1.864 0.5778 1.1963
1.8 0.5861( 0.6230 54.6 69.0 0.3400 1.990 0.5815 1.3172
1.9 0.5712| 0.6040 60.4 74.2 0.2818 2.128 0.5812 1.4482
2.0 0.5573] 0.5866 66.3 79.5 0.2239 2.280 0.5767 1.5906
2.2 0.5323) 0.5560 78.0 89.1 0.1104 2.629 0.5560 1.914
2.4 0.5104| 0.5298 89.7 | 101.0 0.0025 3.049 0.5202 2.298
2.6 0.4910 0.5071] 101.4 | 111.8 |—0.0968 3.553 0.4708 2.755
2.8 0.4736| 0.4872 113.0 | 122.8 |—0.1850 4.157 0.4097 3.301
3.0 0.4579| 0.4694, 124.6 | 133.8 |—0.2601 4.881 0.3391 3.953
3.5 0.4245| 0.4326] 153.6 | 161.5 | —0.3801 7.378 0.1374 6.206
4.0 0.3975| 0.4034] 182.4 | 189.4 |—0.3972| 11.302 |—0.0660 9.759
5.0 0.3560| 0.3594| 240.1 | 245.7 [—0.1776| 27.24 |—0.3276| 24.34
6.0 0.3252| 0.3274| 297.6 | 302.3 0.1507 67.23 |—0.2767| 61.34
7.0 0.3012| 0.3027| 355.1 | 359.1 0.3001| 168.6 —0.0047| 156.04
8.0 0.2818| 0.2829) 412.5 | 416.0 0.1717| 427.6 0.2346| 399.9
9.0 0.2658( 0.2666, 469.9 | 473.0 |—0.0903/1093.6 0.2453(1030.9
10.00 | 0.2522| 0.2528| 527.2 | 530.1 |—0.2459 0.0435
;, or conversely
Z(r) -1 . 1=-Y.(
F Fv(T) = Z’_(T) + 11 F((T) = 1 + Y’_(T)’ (83b)
| where
’ L _ I S S 1C))
W= svve YO 7e T Yoo
and
.y HP (kr )
Y+ = _]Y H(?)Ek ; Y _1('“_’10)’
Y_ =‘7Y (1)(kT) th +i(m—mo)

HP (kr) ho
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With the aid of Egs. (82) and (83) radial-line calculations may be per-
formed with either the voltage or current reflection coefficient in a manner
similar to uniform line calculations. In fact for large kr it is apparent
that the two types of calculations are identical, since I'y = —TI; and
Y,=Y_=7Y7.

The computation of frequency ‘sensitivity on a long radial line is
facilitated by a knowledge of the differential forms of Eqgs. (82). From
Eqgs. (82a) and (80) it follows that

dly(r) _ dTv(ro) .'4[ | ]dk
o) To(rg) x| R0e) ~ WGroy|

(84)

gives the relation between the changes dT'v(r) and dT'v(ro) in the input and
output reflection coefficients due to the relative frequency shift dk/k.
As for the case of the corresponding uniform line relation (35), Eq. (84)
can be decomposed into an amplitude and phase part from which it is
apparent that the relative change in reflection coeflicient is the same at
all points of a nondissipative line.

The description of the dominant E-type mode in the waveguide
shown in Fig. 1-8b is somewhat different from that just described.
Because of the vanishing tangential electric field at the guide walls the
dominant mode is no longer angularly symmetric and hence m = 0.
The transmission-line description is based on the mth-order Bessel and
Hankel functions but otherwise is formally identical with that just
described. Since no table or plots of the mth-order radial cotangent,
ete., functions are available,! no details of this dominant E-type descrip-
tion will be presented. The transmission-line description of the higher
angular modes in radial lines likewise depends on mth-order Bessel
functions.

Description of Dominant H-type Mode—Frequently in the regions
shown in Fig. 1-8 the frequency and excitation are such that, almost
everywhere, only the lowest H-type mode is present. The field con-
figuration of this mode is angularly symmetric about the z-axis, and
hence m = 0. For regions of infinite height in the z direction the mag-
netic field is parallel to the z-axis, the electric field lines are circles or
circular arcs about the z-axis, and n = 0. For the particular case of the
waveguide shown in Fig. 1-8a the field configurations of the dominant
E- and H-type modes are, therefore, dual to each other. For regions of
finite height there is an additional radial component in the magnetic field
of the dominant H-type mode, and n 5 0. Duality between the fields
of the two dominant-mode types no longer exists. However, whatever
the height, the transmission-line description of the dominant H-type

1Cf. H. S. Bennett, “Transmission Line Characteristics of the Sectoral Horn,”
Proc. 1.R.E., 87, 738 (1949).
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mode in the waveguides of Fig. 1-8 is dual to that of the dominant E-type
mode in Fig. 1-8¢. Duality in this case implies that in Eqs. (64a) the V,
ZI, and k of the dominant E-type description are replaced by the I, YV,
and « of the dominant H-type description. The dependence of the
characteristic admittance ¥ and mode constant « of an //-type mode on
the cross-sectional dimensions of a radial waveguide are given in Sec. 2-7.

As a consequence of duality all relative admittance relations derived
above for the dominant E-type mode in the guide of Fig. 1-8¢ are identical
with the relative impedance relations for a dominant H-type mode, pro-
vided % is everywhere replaced by «. For example, the fundamental
input-output impedance relation for a length y — z of the dominant
H-type radial line is obtained from Eq. (69) by duality as

Z’(T) — .7 + Z'(To)f(xyy) Ct(l},y)’
Ct(z,y) + jZ'(ro){ (z,y)

where z = «r and y = «re. 1In addition the relative admittance param-
eters (76) of the = circuit representation (¢f. Fig. 1'13a) for a length
y — z of a dominant E-type radial line become the relative impedance
parameters for the T' circuit representation (cf. Fig. 1-13b) of a length
y — z of the dominant H-type line. It is also evident that the scattering
description of the dominant H-type mode follows from that of the
dominant E-type mode by the aforementioned duality replacements.
In employing duality one should remember that an infinite admittance,
or short circuit, becomes on the duality replacement an infinite impedance,
or open circuit, and conversely.

1.8. Field Representation in Nonuniform Spherical Waveguides.—
Another type of nonuniform region that permits a field representation in
terms of an infinite set of known transmission modes is the spherical
waveguide depicted in Fig. 1-15a or b. The transmission direction is
along the radius 7, and the ¢ cross sections transverse thereto are either
spherical surfaces as in Fig. 1-15¢ or spherical sectors bounded by cones
of aperture 26;, and 26, as in Fig. 1-15b. The Maxwell equations for
the electric and magnetic fields transverse to the radial direction, which
is characterized by the unit vector 1o, may be written in invariant vector
notation as

(85)

19 By = —jht (s + ’Vf‘) C(H, X 10), B

rar k

19 vy (86a)
I3 t

. H,) = —jkn (:: -+ % ) (ro X Ey),
the longitudinal components being expressed in terms of the transverse
components as

jknE, = V.- (H, X ro), } (860)

]k{HT V. (ro X Et).
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7777/ ] 7///////

o' -”lll///,“ 177

Side view Section A-A
(@) ®
F16. 1-15.—S8pherical waveguides: (a) Spherical; (b) Conical.

The notation is the same as that employed in Egs. (1) and (2) save that
¢V and V,, the gradients transverse to 1o, are defined by

vV — ro—é;

v ar

It

19
V, =V — ;55‘7'21'0.
Alternatively, in the spherical coordinate system, r, 6, ¢ appropriate to

these geometries, the field equations for the transverse components may
be written as

13 By = —jks {H¢ + o [a% o 2 (sing H,)
BT ]
%% (rBe) = —jk¢ {_H’ + k%r2 _sui’ﬂ 6:260 (sin6 Ho)
1 92
] - sin® 9¢* 9] N @
23 oHY) = —jkn [—Ed, + 557 | 79 550 35 B
- 566 5111_0 aio (sind E.,,)] ,
7 o (HO) = —dkn {+E’ + s s 0 B
- suln_zo 62260 (siné E¢)] ,




Sec. 1-8] NONUNIFORM SPHERICAL WAVEGUIDES 49

and for the longitudinal components as

. 1 J . i)

]k‘qEr = rhm l:a.o (51n0 H¢) ot % Ho:l; (88)
. 1 d a ,.
J/C{Hf = rme[% Eo _ 6—0(Sln0 E’¢):|'

The dependence of the fields on the transverse coordinates may be
integrated out because the knowledge of the boundary conditions on the
curve or curves s (if any) bounding the transverse cross sections implies
the knowledge of the form of the transverse mode fields. As in the case
of a uniform region this may be done by introduction of an infinite
set of orthogonal vector functions which are of two types: el(8,¢) and
e’(8,¢). The E-mode functions e;(8,¢) are defined by

e: = —r,V,
h! =1, X &}, (89a)
where

Y, V&, + ki, = 0,
& =0ons if k; = 0,

M —Oons ik, =0, (895)
ds
The H-mode functions e}’ (8,¢) arc defined by
e/ =r X V¥,
h:l =1, X e:/’ (90(1)
where
v, V¥, 4+ kész‘l’i = 0,
oV
3 = 0 on s. (90b)

The two-dimensional scalar operator 72V, -,V is represented in spherical
coordinates by

J . a3 1 gt
365930 T sintg agt

1
2 . —
v, -,V = Snd
The subscript 7 denotes the double index mn and is indicative of the
two-dimensional nature of the mode functions. The vector v is the
outward-directed normal to s in the plane of the cross section. For
unbounded cross seetions, as in Fig. 1-15a, the boundary conditions on &;
and ¥; are replaced by periodicity requirements.

The explicit dependence of the mode functions €/ and e.’ on the cross-
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sectional coordinates 6, ¢ will be given in Sec. 2'8. At this point we shall
state only that the e functions possess the same vector orthogonality
properties as in Eq. (5) for the uniform case. In the spherical case the
domain of integration is the entire spherical transverse cross section
having the angular surface element dS = sin 8 df d¢. The representation
of the transverse field in terms of the above set of vector modes is given

by
Ed(r,0,6) = 2 Vi S + z Vi %

ny (91)
Hl(r;e;¢) = 2 I (T) _ + 2 I”(T) __’
and that of the longitudinal fields follows from Eqs. (86b) to (91) as
jknE, = k“ @,
: (92)

"
Jkg_Hr — z kct VII

1

The mode amplitudes V,; and I; are obtained from the orthogonality
properties of the mode functions as

// TEt'el'dS,
(93)
/ / rH, - h; dS,

where, since the amplitude relations apply to both mode types, the mode
superscript is omitted.

The substitution of Eqgs. (91) into (86a) and use of Egs. (5) lead to the
defining equations (omitting the mode sub- and superscripts)

V.

I;

% = —ZI,
dl . )
d—T = —]KYV,

which determine the variation with  of the as yet unknown amplitudes
V and I. As before, these equations are of transmission-line form and
constitute the basis for the designation of V and I as the mode voltage
and current. The propagation wave number « and characteristic imped-
ance Z of the 7th mode are given by
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k?
k= |k — where k2 = n(n + 1).
r
Z = 1o ¢ k for H-modes,
Y K
1 K (95)
Z = v = {E for E-modes,

where the numerical value of n is determined by the cross-sectional shape
and the @ dependence of the mode in question.

Spherical Transmission Lines.—The frequency and excitation of a
spherical waveguide of the type illustrated in Fig. 1:15 may be such that
the fields therein are almost everywhere characterized by only a single
mode. For such a mode the electric and magnetic fields transverse to
the transmission direction » may be represented as

E(r,0,6) = V() <22,
H(r,0,6) = 1) 289,

where the mode voltage V and current I obey the spherical transmission-
line equations (94), and where e and h are known orthogonal vector
functions characteristic of the cross-sectional form of the mode. The
knowledge of the latter functions reduces the problem of field description
to that of the determination of the behavior of V and I on a spherical
transmission line. Spherical transmission lines are distinguished by the
numerical value of n [¢f. Eqs. (95)], this mode index being indicative of
the § variation of the mode fields. In the waveguide of Fig. 1-15a the
dominant mode is a dipole field characterized by n = 1, whereas in the
waveguide of Fig. 1-15b the field of the dominant mode is angularly sym-
metric and n = 0 (¢f. Sec. 2-8). Although a transmission-line analysis
of these dominant modes can be presented along the lines developed in
the preceding sections, a detailed treatment will not be carried out because
of the lack of appropriate numerical tables. The transmission-line
behavior of typical spherical modes will, however, be sketched.

The wave equations that describe the mode behavior on a spherical
transmission line may be obtained for the case of E-modes by elimination
of V; from Eqs. (94) as

da*l; aln + 17 ,,
drt [’“2 - r—] I;=0 (96a)
and for the H-modes by elimination of I as
av! _atn+ DY) 0
o [k2 T] vI =o0. o65)
E. G. & G. LIBRARY [

LAS VEGAS BRANCH
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The corresponding equations for V! and I!' are not so simple, and hence
these amplitudes are best obtained from I} and V] with the aid of Egs.
(94). Solutions to Egs. (96) may be expressed in terms of the standing
waves

J,.(kr) and N"(kr)’ (97(1)
where
7 14 " (sin z
Jﬂ(x) =X ( ZEI;) ( T ))
Role) = —zv+ (_ 1d ) <coz x) (97b)

J.@)Ni(x) — Na(@) Ji(@) = 1.

The functions J.(z) and N.(z) are closely related to the half-order Bessel
functions; typical functions are

sin . S
Jiz) = —cosz + = Nl(x)=—smx—&xx-

Jo(x) = sin z, No(z) = — cos z,
(97¢)

In terms of these solutions the current and voltage of an E-mode at any
point 7 of a spherical line follow from Egs. (94) as
I(r) = I(ro) (jﬂN:m - Nnj;o) —inV (7o) (jnoﬁn - Nnojn),
V() = V) (Tl — Raodl) =g (Tl — ool

where I(ro) and V(ro) are the corresponding mode current and voltage at
any other point ro and

I (98)

jﬂ = jn(kT), jno = jn(kro)y j; = ijﬂ(x)] y © T
dx z=kr

As for the case of the uniform line the voltage-current relations may
be schematically represented by a transmission-line diagram similar to
that of Fig. 1-2 which indicates the choice of positive directions of V and I
(if z is replaced by 7). The relations given in Eqgs. (98) between the mode
voltage and current at two points on a spherical E-line may be rephrased
in impedance terms. On introduction of the relative impedance at any
point r,
Vi{ry _ Z(r)
(R
which is counted positive in the direction of increasing r, and division of
Egs. (98), one has

vy _ 31 Z'(ro) ctulz,y)a(z,y)
Z0) = Cllay) + 72 rx ) ®9

Z'(r) =
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where z = kr, ¥y = kro, and

J@Ni@) — NaJi) 1

cto(z,y) = 7. (z)g () — N (x)J ) T inGy)

J @) Niy) = Nu(@)Jnly) _ 1
Ctu(z,y) = T o) = K@ 7 w) = Ty (99a)
(@) = JmN@—ij@—MW%

Jn@No(y) ~ Nu(@)J(y)
Ct’l(x;y) g_l(x)y) = - Ct‘l(yyx)'

The functions ct, and Ct, are termed the small and large spherical
cotangents, respectively; their inverses, tn, and Tn,, are correspondingly
called small and large spherical tangents. As in the case of the radial
functions of Sec. 1-7 this nomenclature is based on the asymptotic
identity of the spherical and trigonometric functions at large £r. Plots
of the spherical functions are not as yet available.!

Equations (99) apply to any E-mode. For conical regions of the
type indicated in Fig. 1-15b the lowest mode is transverse electromagnetic
and n = 0. For this mode

cto(r,y) = Cto(z,y) = cot(y — x),
Golzy) = 1,

and therefore the transmission-line description reduces to that of a
uniform line with a propagation wave number k£ and characteristic
impedance ¢.

From Eqs. (94) and (95) it is evident that the transmission-line
description of an H-mode follows from that of an E-mode on the duality
replacements of I, V, ¢ of the latter by V, I, % of the former. Con-
sequently the relation between the relative admittances at two points on
an H-mode spherical line is given by Eq. (99) with Z’(r) replaced by
Y'(r). In the case of H-modes n is always unequal to zero.

The scattering description of the nth mode on a spherical transmission
line is based on the spherical Hankel function solutions

AOkr) = Joutkr) + N .(kr),
A2y = Jalkr) — jR.(kr)

of the spherical wave equations (96). The former solution represents
an ingoing and the latter an outgoing traveling wave. For the case
of an E-mode the solution of Eq. (96a) for the mode current may be
written

(100)

I(r) = L H®(kr) + LB r), (101a)

1Cf. P. R. Desikachar, “Impedance Relations in Spherical Transmission Lines,”
Master’s thesis, Polytechnic Institute of Brooklyn, (1948).
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and hence

=iV () = LndP' (kr) + LeaHP' (kr), (101b)
where the prime denotes the derivative with respect to the argument.
The generator, or exciting source, is assumed to be at small r. To

emphasize the analogy with exponential functions the amplitude h. and
phase #. of the spherical Hankel functions are defined by

AP(@) = (=) haetit,

ADE) = (49 iheit 1o
where
-V 2 5= T -1 Va(®),
ha J2@) + Ni(@), Fa=(n+1) 5 T tan 1.7n(x)
A current reflection coefficient
Tooa HO (kr Lea .

can then be employed to characterize the field conditions at the point 7.
The relation between the current reflection coefficients at the point r and
ro follows as

Ti(r) = Ty(ro)ei2inbr)—talirn)] (104)

Hence, with the knowledge of tables! of the spherical amplitude and phase
functions A. and 4., a scattering description can be developed in exact
analogy with that of the uniform and radial lines (¢f. Secs. 1-4 and 1-7).
In fact for an n = 0 E-mode in the conical guide of Fig. 1-15b

ho =1 and ﬁo = k’l",

and therefore the two scattering descriptions are identical. A similar
scattering description can, of course, be developed for the H-modes on a
spherical transmission line.

I Tables of the amplitude and phase functions can be found in ¢bid. Also of.
Morse, Lowan, Feshbach, and Lax, ‘‘Scattering and Radiation from Spheres,”
OSRD report reprinted by U.S. Navy Dept., Office of Research and Inventions,
Washington, D.C., 1946. The amplitude functions in this report are defined some-
what differently from those in Eqs. (102).




CHAPTER 2
TRANSMISSION-LINE MODES

2-1. Mode Characteristics.—As outlined in the preceding chapter
the description of the electromagnetic fields within a waveguide can be
reformulated in terms of the voltage and current amplitudes of a set of
mode functions e; indicative of the possible transverse field distributions
in the waveguide. The resulting transmission-line desecription, though
formally independent of the form of the mode functions, depends quanti-
tatively on the characteristic impedance and propagation constant of the
individual modes. In many cases these two fundamental mode charac-
teristics are simply interrelated so that a knowledge of only the mode
propagation constant is necessary. For the case of waveguides with
walls of finite conductivity the mode propagation constant v = « + j8
is complex (c¢f. Sec. 1-6). The attenuation constant o and the wave-
number 8 depend upon the cross-sectional dimensions, the conductivity,
and the excitation wavelength A of the given waveguide. These mode
characteristics must be known explicitly for quantitative transmission-
line considerations. Their computation requires a knowledge of the
mode field distribution or, equivalently, of the mode function.

In this chapter the explicit form of the electric and magnetic field
distribution in the various modes or, equivalently, of the vector mode
functions e; will be presented for several uniform and nonuniform wave-
guides. The customary engineering assumption of exp (jwt) for the time
dependence of the fields, with suppression of the time factor exp (jwt), is
adhered to. Electric and magnetic field intensities are expressed as rms
quantities. Concomitantly V;and I;, the voltage and current amplitudes
of the normalized mode functions e;, are rms quantities. As a conse-
quence the total mode power flow in the transmission direction is given
by Re (V.I¥). First-order values of the attenuation constant « and the
cutoff wavelength N\. will be stated for modes in several types of wave-
guide. In addition maximum electric-field intensities, power expressions,
etc., will be indicated in several cases. Although the prinecipal concern
of this chapter is to provide quantitative data for transmission-line
computations in waveguides of different cross sections, the presentation
includes the requisite mode information for the theoretical computation
of the equivalent circuit parameters of waveguide discontinuities (cf.
Sec. 3-5).

55
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Plots of the electric- and magnetic-field distributions are desirable
as an aid to the visualization of the field distributions in the various
modes. Mode patterns of two types are useful in this connection. The
one type indicates the electric- and magnetic-field strengths on transverse
and longitudinal planes within a waveguide; the other shows the
magnetic-field intensity or, equivalently, the current density on the
inner surface of the guide. The former of these patterns readily furnishes
qualitative information as to the location of points of maximum field
strength, power flow, etc. The latter yields information on current flow
and is desirable in connection with questions of dissipation and of coupling
by apertures in the guide walls.

Since a number of mode patterns will be presented in this chapter,
it is desirable to say a few words as to the construction of the patterns.
Each pattern depicts the instantaneous field distribution in a traveling
waveguide mode. For a given mode it is desirable to indicate quantita-
tively the intensity of the electric- and magnetic-field distribution on a
specified plane. Such information can be portrayed in the usual type of
flux plots only if the field lines are divergenceless on the given plane, the
intensity of the field being then indicated by the density of the field lines.
Mode fields generally are not divergenceless in a given viewing plane
since field lines generally leave and enter the plane. As a result many of
the mode patterns are not true flux plots and hence do not indicate the
field intensity everywhere. Nevertheless, wherever possible the density
of the field lines has been drawn so as to represent the field intensity.
For example, this convention has been adhered to in regions where no
lines enter or leave the viewing plane. These regions are generally
apparent from a comparison of the field distribution in the various
sectional views.

The mode patterns are drawn so that the relative scale of different
views is correct as is also the direction of the field lines. The following
conventions have been adhered to:

1. Electric field lines are solid.
2. Magnetic field lines are short dashes.
3. Lines of electric current flow are long dashes.

Lines of zero intensity have generally been omitted from the mode
patterns for the sake of clarity. The location of these omissions should
be apparent and taken into account to preserve the flux plot.

2.2, Rectangular Waveguides. a. E-modes.—A uniform waveguide
of rectangular cross section is described by the cartesian coordinate
system zyz shown in Fig. 2-1. Transmission is along the z direction.

In a rectangular waveguide of inner dimensions a and b, the E-mode
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functions €] normalized over the cross section in the sense of Egs. (1'5)
are derivable from the scalar functions
2 1

P = - sin 7Tz sin L”fy, 1)
™ b a a b
A /mg -+ n-
a b
where m, n =1, 2, 3, - - - . By Egs. (13), (1-10), and (1) the field
distribution of the E..-mode is given as
2V m mr_ . nw
Ez = - —'—————-—= 0§ —2 81N -V,
a b a a b
\/m2 S 4 nts
a b
2V n .. mmr nw
E, = — T T . sin =~z cos -y, (2a)
m22 4 opr?
a b
~__~Lf*\/29 2@ gin ™ gin 7
E.=—j b N a+ n® 3 sin —~wsin -y,
Hz = ?L—n: Sin ,”lr.l: cos ﬂy,
b b a a b
m? =~ 4 n? -
a b
H, = — 2 ™ cos Prsin ’n_7ry, (2b)
a b a a b
\/m2 =+ n?z
b
H, =0,

where the field variation along the z direction is determined by the
transmission-line behavior of the mode
voltage Vi(z) and current I;(z) [cf. a
Eq. (1-11)]. The components of the
orthonormal vector €. are giVen oo rrrrrrrrrrrrrr
directly by E. and E, on omission of }
the amplitude factor V7.

The cutoff wavelength for the
E...-mode is

b

TSNS
AR

by

2\/a—l-7 . o ¥ 1

—_— (3) Rl ok Lok va L
m? 9 + n? a Fig. 2-1.—Rectangular waveguide cross
a b section.

From Eq. (1-50) the Em.-mode attenuation constant due to dissipation
in the guide walls is

L
Aci =

a
3
« =20 by L )

2
¢a ‘m"*l-nz%g \/1_(;\):_)2
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where the characteristic resistance ® is a measure of the conductivity
properties of the metal walls (¢f. Table 1-2). The attenuation constant
is a minimum at the wavelength X = 0.577).,.

The maximum value of the transverse rms electric-field intensity of
the E,.-mode is

AV 1
|Emnx[ - \/ab El’)’;‘ (5(1)

na mb
and occurs at values of z and y for which

tan %rx =+ 1—"{?, tan %ry =+ %- (5b)
Since an E-mode possesses a longitudinal component of electric field, the
maximum of the total electric field is dependent on the impedance condi-
tions in the guide.

For a matched nondissipative guide the total average power flow
along the positive z direction is given by

Pi=Re (Vi) = == — |V}~ 6)
A
\/ b (r>

In Fig. 2-2 are portrayed the field distributions of the E.;, E,, and
Eq-modes in a rectangular guide of dimensions a/b = 2.25 and excitation
such that A,/a = 1.4. The mode patterns on the left-hand side of the
figure depict the electric and magnetic lines within transverse and
longitudinal sections of the guide. The right-hand patterns show the
magnetic field and current lines on the inner surfaces at the top and side
of the guide.

b. H-modes.—The H-mode functions e/, normalized over the cross-
section, are derivable from scalar functions

mar
\/e'"e" — e cos 22 cos T )

v, = b
\/m2 + n2

mn=201223:---, mode m = n = 0 excluded,
€en = 1 fm =0,
€&m = 2 if m 0.

where
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F1g. 2-2.—Field distribution for E-modes in rectangular guides.

1. Cross-sectional view
2. Longitudinal view
Surface view

3.
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The field components of the Hn..-mode follow from Eqs. (1-4), (1-10),
and (7) as

E.=V/ \/;)’"e” n cos ™z sin n—l:ry,
m? b +n2d ¢
a b
E, = —Vy Xt _ ™ sin 22 cos Z’bl'y, (82)
a \/mﬁ b o2 a a
a b
E, =0,

H, = I// '\r €EméEn

,\/m —+n2

6meﬂ nw

_ cos ™7, sin -9, (8b)
,\/m2 N nz a b

— HA'\/CmGn 2 U 29
H, = —jV; </ma+nbcos :z:cos?

The z dependence of the field components is determined by the trans-
mission-line behavior of V{'(z) and I/'(2) [¢f. Eq. (1-11)]. On omission
of the amplitude factor V; the components of the orthonormal vector
function e’ are given directly by E. and E,.

The cutoff wavelength of the H,~-mode is

2 \/ab

———— 9)
A [m2é + n? 2
a b

and is exactly the same as for the E,,,-mode.
The attenuation constant for a propagating H..-mode due to dissi-
pation in the guide walls is

2
oot oy ) @]
$b m29+n22 AL 1_()\)2
a b \ N

c.
where the characteristic resistance ® (¢f. Table 1-2) is a measure of the
conductivity of the metal walls.
The maximum electric-field intensity in a Hn.-mode is for m # 0,
n=0

sm T cos X
a b y)

I
o]

H, =

"o
>‘c-.' -

2|V 1
Vapmb | na
na mb

|Ene| = (11a)
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and occurs at values of z and y for which

n m
tan "—”—rx = + ﬂl: tan —7ry = + —b
a mb b na

For m > 0, n = 0, the maximum electric field is

2
[Bmax| = 4 [% v (11b)

and occurs at integral multiples of z = a/2m. For m = 0, n > 0 the
maximum field has the same magnitude as in Eq. (11b) but occurs at
integral multiples of y = b/2n.

In terms of the rms mode voltage V;’ the total power carried by a
traveling H..,-wave in a nondissipative guide is given by

Pi=n \[1 - (%) Vi (12)

The Hie-mode is the dominant mode in rectangular guide and hence
will be considered in some detail. Instead of the voltage V{; and current
I, employed in Egs. (8) a voltage V and current I more closely related
to low-frequency definitions can be introduced by the transformations

. _ [
AN A A NS

In terms of V and I the nonvanishing field components of the Hi-mode
are

V
E, = - + sin -z,
H, = 2—I sin Iz, (13)
a a
. A T
H, Jngg p €08 T

For guide walls of finite conductivity the attenuation constant of the
Hip-mode is

2 (A Y
m1+7%)

| ——=22L (14a)
b 2
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and the guide wavelength is

)\g = Y ’7 (14b)
A
t- (7)

to a first order. The maximum electric-field intensity occurs at the
center of the guide and has the magnitude |V|/b. The rms voltage V in
a traveling wave is related to the total power flow by

p_ VP

for a nondissipative guide.

Mode patterns for traveling Hio, H11, Ha -modes in rectangular guides
are displayed in Fig. 2-3. As in the case of Fig. 22, a/b = 2.25 and
N/a = 1.4, The mode patterns on the left indicate the field distribution
on cross-sectional and longitudinal planes; those on the right depict the
electric-current distribution on the inner surface of the guide.

¢. Modes in a Parallel Plate Guide. The modes in a parallel plate
guide of height b may be regarded as appropriate limiting forms of modes
in a rectangular guide of height b as the width a of the latter becomes
infinite. As noted in Secs. 2-2a and b, the modes in a rectangular guide of
height b and width a form a discrete set. However, as the width of the
rectangular guide becomes infinite the corresponding set of modes
assumes both a discrete and continuous character; the mode index =
characteristic of the mode variation along the finite ¥ dimension is dis-
crete, whereas the index m characteristic of the variation along the
infinite £ dimension becomes continuous. The complete representation
of a general field in a parallel plate guide requires both the discrete and
continuous modes. For simplicity, we shall consider only those discrete
modes required for the representation of fields having no variation in
the z direction. For the representation of more general fields, reference
should be made to Sec. 2-6 wherein a typical representation in terms of
continuous modes is presented.

The discrete E-modes in a parallel plate guide of height b are derivable
from the scalar functions

’ 0<y<bd
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H,,
)\c =20
1
KRN
2.
o= 2a Hy,
N+ e/h?
1.

!
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H e

Ae= 4 1121

Iig. 2-3.—Iield distribution for H-modes in rectangular waveguide.
1. Cross-seetional view
2. Longitudinal view
3. Surface view
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Hence, by Egs. (1-3) and (1-10) the field components of the Ey.-mode
follow as

E. =0,
= — V! o[ cos MY
E,=-V; p oS g%, (150)
— e T e g PTY
E, = —3ti; TR
H, =1, E—l;'cos %/,
H -0 (15b)
v = )
H, =0,

where the z dependence of the mode fields is determined by the trans-
mission-line behavior of the mode voltage V] and current I given in Eqgs.
(1-11). The components of the orthonormal (in the y dimension only)
vector e are obtained from E. and E, on omission of the mode amplitude
Vi.

The cutoff wavelength of the Ej.-mode in parallel plate guide is
N: = 2b/n. The attenuation constant of the Eo.-mode caused by finite
conductivity of the parallel plates is

a=%?3_$ﬁﬁ; (15¢)
1-{(2Z

()
where the dependence of the characteristic resistance ® on the conduc-
tivity of the plates may be obtained from Table 1-2. It should be noted
that these results are special cases of Eqs. (3) and (4) withm = 0.

The Ey-mode is the principal, or TEM, mode in a parallel plate guide.
The principal mode is characterized by an infinite cutoff wavelength A,
and hence by a guide wavelengh A\, identical with the space wavelength A.

Instead of the voltage Vg, and current I, more customary definitions for
the principal mode are obtained on use of the substitutions

s
Vb
In terms of the new mode amplitudes V and I the nonvanishing field
components of the principal mode are

Vi = and Iio = Vb 1.

E, = —
H. =1,

2

v
b

as derivable from a scalar function y/b by means of Eq. (1-3). Tt is
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evident that V represents the voltage between plates and I the current
flowing per unit width of each plate in the conventional manner. The
attenuation constant, descriptive of dissipation in the plates, for the
principal mode reduces to

Ol =
~ S

Q
I

The discrete H-modes in a parallel plate guide of height b are derivable
from the scalar mode functions

nwy
2%
W;:J; 72{' y 0<y<b,
b
n=1,23 - -

y

Hence, by Eqgs. (1-4) and (1-10) the field components of the Hy,-mode
follow as

[ D
E,— V'- \/len—b—;

E, =0 (16a)
E. =0,

H, =0,
_qn (2. nmy

Hy = I,' \/; sin —b—) (lﬁb)
- @\F nry

H, = —jV] 55 \ b %5

where as above the z dependence of the mode fields is determined from the
transmission-line behavior of the mode amplitudes V!’ and I!. The
components of the orthonormal vector e;’ are obtained from E, and E,
on omission of the mode amplitude V.

The cutoff wavelength A} of the Ho,-mode is 2b/n, the same as for
the Epe-mode. The attenuation constant of the Hp.-mode due to finite
conductivity of the guide plates is

ct

where again the characteristic resistance ® of the metallic plates may
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be obtained from Table 1-2. The decrease of the attenuation constant
with increasing frequency is to be noted.

2-3. Circular Waveguides. a. E-modes.——A uniform waveguide of
circular cross section is most conveniently deseribed by a polar coordinate
system r¢z as shown in Fig. 2-4.

For a cross section of radius a the E-mode
vector functions e/ normalized over the cross sec-
tion in accordance with Egs. (1-5) are derivable
from the scalar functions

(2)
&, = \/fz _ N4/ cos me, an

T XiJmi1(xi) sin

where
m = 0! 17 27 37 T )
€m = 1 ifm=20
Fig. 2:4.—Circular wave~ b i ’
guide cross section. en = 2 if m = 0,

and x; = Xms, the nth nonvanishing root of the
mth-order Bessel function J.(x), is tabulated in Table 2-1 for several
values of m and n.

TaBLE 2:1.—Ro0Ts OF Jn(x) =0
l) T 4m? — 1 _ (4m? — 1)(28m?® — 31) o
2)2 4d4x(m 4+ 2n — %) 4873 (m + 2n — 3)3

V 0 1 2 3 4 5 6 7
n

2.405 3.832 | 5.136 6.380 | 7.588 8.771 9.936 | 11.086
5.520 7.016 8.417 9.761 | 11.065 | 12.339 | 13.589 | 14.821
8.654 | 10.173 | 11.620 | 13.015 | 14.372
11.792 | 13.323 | 14.796

xm..=(m+2n—

W N =

On use of Eqgs. (1-3), (1-10), and (17) the field components of the
E...-mode become in polar coordinates

J/ <Xir>
— _yr [ "Na/ cos
E = -V 7 aJ ni1(x) sin me,
J (LT) (18a)
; Em M a / sin
- 4y 2T N2/
E, =2V T Xi T m1(xs) cOS me,
A J’"<X¢;T>
— i MXi g [Em cos
B = =58 o Lo\ 7 2T sin ™9
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£
H. =3I & m__\a/ sin
+ T Xi T m1(x:) cos meé, (18b)

- J;(ﬁ)
1 |€m 2/ cos

Hy = -1 T aJmii(xi) sin me,
H, =0

The z variation of the mode fields is determined by the transmission-line
behavior of V! and I given in Eqs. (1-11). As is evident from Eqs. (18)
the E,..-mode (m = 0) is degenerate and consists of two modes with even
or odd angular dependence. Though not explicitly shown each of these
modes is, of course, characterized by a different mode voltage and current.
The polar components of the vector e are obtained from E, and E4 on
omission of the amplitude V.
The cutoff wavelength of the degenerate E...-mode is

2r
N, =" a, 19
o (19)
where the roots x.. are given in Table 2-1.
The E-mode attenuation constant due to finite conductivity of the
guide walls is

SR S (20)

where the frequency-dependent characteristic resistance ® of the metal
walls may be obtained from Table 1-2.

In terms of the rms voltage V! the total power carried by an E,..-mode
in a matched nondissipative guide is

Pi= ——1 |V (21)

€t

Mode patterns of the instantaneous field distribution in traveling
waves of the Eo-, E1-, and E,-modes are shown in Fig. 2-5. The
excitation frequency is such that A;/a = 4.2. The left-hand views of
Fig. 2-5 depict the electric- and magnetic-field intensities on transverse
and longitudinal planes in which the radial electric field is maximum.
The right-hand view shows a development of the magnetic-field and
electric-current distribution on half the guide circumference.
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Ne=12244a
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Fic. 2-5.—Field distribution for E-modes in circular waveguide.
1. Cross-sectional view
2. Longitudinal view through plane I-l
3. Surface view from 3-8
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b. H-modes.—The e vector mode functions normalized over the
circular cross section are derivable from scalar functions

1 J"'( -'7') S
v = f a7/ cos e (22)

\/ mZ J (XI) Sln

m=0,1,2 3,

where

and x! = x.. is the nth nonvanishing root of the derivative of the mth-
order Bessel function. Several of the lower-order roots are given in
Table 2-2.

TaBLE 2-2.—Roots oF JL(x') = 0
. _3\r_ 4m*+3  112m' +328m —9
Xon = ('" o ) 2 dx(m 2 -9 4B(m + 20 — ) >0

Y 0 1 2 3 4 5 6 7
n

3.832 | 1.841 | 3.054 | 4.201 5317 6.416 | 7.501 | 8.578
7.016 | 5.331 6.706 | 8.015 | 9.282 | 10.520 | 11.735 | 12.932
10.173 | 8.536 | 9.969 | 11.346 | 12.682 | 13.987
13.324 | 11.706 | 13.170

BN -

From Egs. (1'4), (1-10), and (22) the field components of an H,..-mode
are found to be

Jm(x.'-)
7 em a Sln
E. = 1V \/—W TnGd) cos me,

J,( ,-> (23a)
E. o=y [ "\ a/ cos
R = me

aJn(x}) sin

E, =0,
(2
" X ™\ a / cos

H, = -I \f B T i ™

- J (X_.)

_ v [em m ™\ a / sin (23b)
Ho= =2k T V¥ — m2 alx) cos me
J "—’)

o = ™"\ a/ cos

)‘Xx Vn\f m
" 2ra \/—‘_ ~ @Tal) sin ™
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As evident from Eqs. (23) the Hn..-mode (m = 0) is degenerate; i.e., there
exist two Hn.~-modes, one of odd and one of even angular dependence.
The polar components of the normalized mode vectors e/’ are obtained
from E, and E, on omission of the z dependent voltage amplitudes V'

The cutoff wavelength of the degenerate Hn.-mode is

2r

the roots x! being given in Table 2:2. Except for the degenerate case
m = 0 the cutoff wavelengths differ from those of the E,..-modes.

The H .. attenuation constant due to dissipation in the guide walls is

® m? A\ 2] 1
=gl () J'\/f—T‘z' @)
1 ()

The frequency-dependent characteristic resistance ® of the metal walls
may be obtained from Table 1-2.

The total average power carried by a traveling H,.,-mode in a matched
nondissipative guide is expressed in terms of the mode voltage V! as

A 2
Pi=n 1 — (x_) Wl (26)

The dominant mode in circular guide is the H1;.  In a nondissipative
guide the wavelength of propagation of the Hy;~-mode is

)\g = ——‘)\:‘ (27)

A 2
\/1 B (3.410,)
The maximum rms electric-field intensity of the Hy;-mode occurs at the
axis of the guide and has a magnitude

_ Vil
Bow = 1.50a (28)

In terms of En.. the maximum average power carried by the Hy;-mode is

RN
= —3 — e 2512
Prws = 3.97 X 10 \/1 <3. m) B2, (29)
where all units are MKS.
Modé patterns of the instantaneous field distribution in traveling
Hy, Hy, and H, -modes are shown in Fig. 26 for A\,/a = 4.2. The
transverse and longitudinal views are in the plane of the maximum




CIRCULAR WAVEGUIDES 71

1 Hol Ae=1.640 a
SV ERIEAE
e
27777, L
.-..,-_Lr.l._r-—'_—. -<-|- .L-}--I,-.{.-F_'.
P iiiii el
: $338¢3 } [N '1"1'7','"'}“!"'3'
e bbb L L
R SERE: HH by Py
piizi Dl B N e R o o Y el
- — NI
1
1
Ao=3412
G
N T TI1T T ™
b ~/ \"\-'%T‘n‘v/ \ ’lV'ﬂ
! N NAYAN VAW
2L Z 27 777 7T 7 777727 77 7T 77777 777 777 77707 77, l‘ " ‘i ‘L ‘L l ) \— ‘l‘
74~ AP AR it
(B A\ N
NEHR INNE IR e
2 \\\\\\,*4 i /‘//7‘\}\\\\\ i //////|
TR R
FS T A A
No=2057 a
Hy ¢
PLT A TIYIT A
A ST A N
Mo Nz 3 N

LA T A R

1724 3 1 S\ 722¢ 4 7S
S ST R

AN STV T

F ANV R nsnn SR B

F1a. 2-6,-—Field distribution for H-modes in circular waveguide.

1. Cross-sectional view

2. Longitudinal view through plane -
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radial electric field. The views on the right-hand side of Fig. 2-6 depict
the magnetic-field and electric-current distribution on half the guide
circumference.

2-4. Coaxial Waveguides. a. E-modes.—The description of the
uniform coaxial guide depicted in Fig. 2-7
is closely related to that of the circular
guide considered in the previous section.

r The coaxial guide is described by a polar
coordinate r¢z system in which the outer
and inner conductors are at radii a and b,
respectively, and the transmission direc-
tion is along the z-axis.

The vector functions e} normalized in
accordance with Egs. (1-5) and character-
istic of the E-mode fields are derivable [cf.
Eqgs. (1-3)] as gradients of scalar functions.
o 2 e The scalar fuqction appropr?ate. to the
lowest E-mode in a coaxial guide is

1
2a Bop = — e (30)
2rln$
Fia. 2:7.—Coaxial waveguide cross n b
section.
Hence by Eqgs. (1-10), the field components of this mode are
E =v,— 1
2r In & r
b
, 1 1
H¢=100—-_’ (31)

\/21r ln%T

E,=E.=H,=H, =0.

This transverse electromagnetic or TEM-mode is the dominant, or
principal, mode in coaxial guide. Its cutoff wavelength is infinite, and
hence \, = X\ for the dominant mode.

A more customary definition for the voltage and current of the
principal coaxial mode is obtained by multiplication and division,
respectively, of the normalized voltage and current in Eq. (31) by
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In terms of the new voltage V and current [ the nonvanishing components
of the dominant mode become

B=_r
rln a
b (32)
I
He = o

The maximum electric-field intensity in the principal mode occurs at
the surface of the inner conductor and is of magnitude
Vi

bln%

[Eoul| = (33)

For constant outer radius and voltage the maximum electric-field
intensity is a minimum when a/b = 2.72. On a matched coaxial line the
rms voltage V is related to the total average power flow P by

P=2 v (34)

In E

For constant outer radius and |Ema.|, the power flow is a maximum when
a/b = 1.65. The attenuation constant of the dominant mode due to

dissipation in the inner and outer conductors is

s, ® 1

o= (9 + —") , (35)

a b a

2{ In Z

where ®, and ®, (c¢f. Table 1-2) are the characteristic resistances of the
metals of which the outer and inner conductors are constituted. For
fixed outer radius and wavelength the attenuation constant is a minimum
when a/b = 3.6 provided R, = ®,.

The normalized e] vector functions characteristic of the higher
E-modes are derivable from the scalar functions

3= 2. ) 5 mo, (36)

where

r

Z,,.(x; T) = Vren Jm<Xi B) Nnlxs) = N"‘(X" ll;) I m(x)

)2 [f_'sn(xo _ 1]% ’
Jlex:)
m=0123 ---,
em=1 ifm=0,
€ = 2 if m # 0.
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The quantity x: = xm- is the nth nonvanishing root of the Bessel-

Neumann combination Z,.(cx;), where ¢

= a/b.

The quantities (¢ — 1)x;

are tabulated in Table 2-3 as a function of the ratio ¢ for several values of

m and n.
TABLE 2:3.—R00TS OF Jm(ex)Nm(x) — Nmlex)dIm{x) =0

Tabulated in the form (¢ — 1)xmn, n >0
> mn 01 11 21 31 02 12 22 32
1.0 3.142 | 3.142 | 3.142 | 3.142 | 6.283 | 6.283 | 6.283 | 6.283
1.1 3.141 | 3.143 | 3.147 | 3.154 | 6.283 | 6.284 | 6.286 | 6.289
1.2 3.140 | 3.146 ) 3.161 | 3.187 | 6.282| 6.285 | 6.293 | 6.306
1.3 3.139 | 3.150 | 3.182 | 3.236 | 6.282 | 6.287 | 6.304 | 6.331
1.4 3.137 | 3.155 | 3.208 | 3.204| 6.281 | 6.200| 6.317| 6.362
1.5 3.135 | 3.161 | 3.237 | 3.36 | 6.280 | 6.203| 6.332| 6.397
1.6 3.133 | 3.168(3.27 | 3.43 | 6.279 ! 6.206| 6.340 | 6.437
1.8 3.128 | 3.182 | 3.36 | 3.6 6.276 | 6.304 | 6.387 | 6.523
2.0 3.123 | 3.197 | 3.4 3.7 6.273 | 6.312| 6.43 | 6.62
2.5 3.110 [ 3.235 | ..... | ...... 6.266 | 6.3351 ...... 6.9
3.0 3.007 3271 .....| ... 6.258 | 6.357
3.5 3.08 | 3.305( .....| ... . 6.250 | 6.381
4.0 3.073(3.336 | ..... | ...... 6.243 | 6.403
> T 03 13 23 33 04 14 24 34
1.0 9.425 | 9.425 | 9.425 | 9.425 | 12.566 | 12.566 | 12.566 | 12.566
1.1 0.425 | 9.425 | 9.427 | 9.429 | 12.566 | 12.567 | 12.568 | 12.569
1.2 0.424 | 9.426 | 9.431 | 9.440 { 12.566 | 12.567 | 12.571 | 12.578
1.3 0.424 | 9.427 | 9.438 | 9.457 | 12.566 | 12.568 | 12.577 | 12.590
1.4 0.423 | 9.420 | 9.447 | 9.478 | 12.565 | 12.570 | 12.583 | 12.606
1.5 0.423 | 9.431 | 9.458 | 9.502 | 12.565 | 12.571 | 12.591 | 12.624
1.6 0.422 | 9.434 | 9.460 | 9.528 | 12.564 | 12.573 | 12.600 | 12.644
1.8 0.420 | 9.439 | 0.495 | 9.587 | 12.563 | 12.577 | 12.619 | 12.689
2.0 9.418 | 9.444 | 9.523 | 9.652 | 12.561 | 12.581 | 12.640 | 12.738
2.5 9.41319.460 | ... .. 9.8 | 12558 | 12.503 | ...... 12.874
3.0 9.408 | 9.476 | ... .. 10.0 12.553 | 12.605 | ...... 13.02
3.5 9.402 | 9.493 10.2 12.549 | 12.619 | .. ... 13.2
4.0 9.306 | 9.500 | ... | ... 12.545 | 12.631 | ... ... 13.3

Cf. H. B. Dwight, “Tables of Roots for Natural Frequencies in Coaxial Cavities,”” Jour,
Phya., 27 (No. 1), 84-89 (1948).

Math.

The cutoff wavelength of the E,..-mode may be expressed in terms
of the tabulated values (¢ — 1)xma as

LS
krl'_

27
(C - 1)Xm"

(@ —b) =~

2(a — b),

n

=1,23, - -.

(37)
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The field components of the E,..-mode follow from Eqs. (1-3), (1-10),

and (36) as
, x; , cos
B, = —Viy Zn ( b) sin me,
E,= V" Zn (xi g) o me, (38a)

E. = it g L% 20 (xi ;1)) o m,

sin
—pm r sin
Hr = +Ii r Zm (X1 b) COSmd”
(38b)
r Xi rpr cos
Il = 0N Z! ( b) . me,

sin

&
!

H. =0

From the form of Eqs. (38) it is apparent that the En..-mode (m > 0)
is degenerate and may have either of two possible polarizations, each
distinguished by a different voltage and current amplitude. The polar
components of the e/ vector are obtained from Eq. (38a) on omission of
the z-dependent voltage amplitude V.
The attenuation constant due to finite conductivity of the inner and

outer conductor is

(Ra J gn. (Xi)

@ Jilexs) | b 1

y
Ju(xi) A\?
Ty 1 SN TN
where ®, and ®; (¢f. Table 1-2) are the characteristic resistances of the
inner and outer conductors, respectively.

In terms of the rms voltage V! the total power transported by a
traveling E,,-mode in a matched nondissipative guide is

a =

(39)

_ n ’
P=—1— (v (40)
NE (x:)

The instantaneous field distribution in traveling waves of the E,,
E,, E, type are shown in Fig. 2-8. The mode patterns are all drawn
for the case a/b = 3 and \,/a = 4.24. The left-hand views portray the
electric and magnetic field distributions in the transverse and longi-
tudinal planes on which the radial electric field is a maximum. The
right-hand patterns show developed views of the magnetic-field and
electric-current distribution on half the circumference of the outer
conductor.
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Fig. 2-8.—Field distribution for E-modes in coaxial waveguide.
1. Cross-sectional view
2. Longitudinal view through plane I-I
3. Surface view from s-s
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b. H-modes.—The vector functions e’ normalized in accordance with
Eqgs. (1-5) are derivable from scalar functions

v, = zm(x: g) o m, (41)

where
. ( ,,) e Jm(x: g) NG — Nm(x: g) T ()
)T T2 [T T — (™ =[5 — (Y *
Lo - @11 -G
m=20,1,23

and x! = xh. 1s the nth root of the derivative of the Bessel-Neumann
combination Z.(cx;) with ¢ = a/b. For n = 1 the quantities (¢ + 1)x%;
are tabulated as a function of the ratio ¢ in Table 2-4; for n > 1 the
quantities (¢ — 1)xmn are tabulated in Table 2-5.

?

TaBLE 2-4.—FIRsT Roor oF J,,(cx)NL(x') — No(ex' )W m(x’) =0
Tabulated in the form (¢ + 1)x,.,, (m > 0)

ml 11 21 31
[

1.0 2.000 4.000 6.000
1.1 2.001 4.001 6.002
1.2 2.002 4.006 6.008
1.3 2.006 4.011 6.012
1.4 2.009 4.015 6.017
1.5 2.013 4.020 6.018
1.6 2.018 4.025 6.011
1.8 2.024 4.026 5.086
2.0 2.031 4.023 5.937
2.5 2.048 3.980 5.751
3.0 2.056 3.908 5.552
3.5 2.057 3.834 5.382
4.0 2.055 3.760 5.240

In terms of the tabulated values, the cutoff wavelength of an H,.-
mode can be expressed as

2r

\

Mi=—"F (a+ D),
(¢ + Dxms (a ) (42a)
M~ (@ + ) form =1, 2, 3,
m
and for an H,..-mode as
2r
)\Z = 7 (a - b);
(20 1) (42b)
N T— Clll) forn=23,4,+°"-.

“=Tn—1)




78

TRANSMISSION-LINE MODES

[Sec. 2.4

It is evident from these equations that the Hi;-mode is the dominant

H-mode in coaxial guide.

The cutoff wavelength of the Hg-mode is

identical with that of the E ;-mode, i.e., xj; = x11 and can be obtained

from Table 2-3.

TaBLe 2-5.—Higuer Roots oF J,(ex)No(x') — Ni (ex' ). (x') = 0

Tabulated in the form (¢ — 1)x:,m, (n>1)
C’”" 02* 12 22 32 03* 13 23 33
1.0 |3.14213.142| 3.142| 3.142| 6.283| 6.283 | 6.283 ] 6.283
1.1 | 3.143|3.144| 3.148| 3.156| 6.284 | 6.284 | 6.287 | 6.290
1.2 | 3.145| 8.151 | 3.167| 3.193 | 6.285 | 6.288 | 6.296 | 6.309
1.8 | 38.150|3.161| 3.194| 3.240| 6.287| 6.293| 6.309 | 6.337
1.4 | 3.155 | 3.174 | 3.220 | 3.319] 6.290| 6.290{ 6.326 | 6.372
1.5 |3.161|3.188| 3.27 | 3.40 | 6.293| 6.306| 6.346| 6.412
1.6 13.167|3205| 332 | 3.40 | 6.206| 6.315| 6.369 | 6.458
1.8 |3.182|38.241| 3.4 3.7 6.304 | 6.333| 6.419 | 6.56
2.0 |3.197|3.282) 35 |...... 6.312 | 6.353| 6.47 | 6.67
25 |3.2353.8361 ... .1 ...... 6.335 | 6.410 | 6.6 7.0
3.0 |3.271 3516 . .....0...... 6.357 | 6.472 | 6.8
35 13305013636/ ......0...... 6.381 | 6.538]| 7.0
40 |33 3758 ...... ... . 6.403 | 6.606
c’"” 04* 14 24 34 05* 15 25 35
1.0 |0.425]9.425 | 9.425| 9.425 | 12.566 | 12.566 | 12.566 | 12.566
1.1 | 9.425| 9.426 | 9.427 | 9.429 | 12.567 | 12.567 | 12.568 | 12.570
1.2 | 9.426| 9.428 | 9.433 | 9.442 | 12.567 | 12.560 | 12.573 | 12.579
1.3 19.427 [ 9.431 | 9.442 | 9.461 | 12.568 | 12.571 | 12.579 | 12.593
1.4 | 9.429019.435 | 9.45¢| 9.484 | 12.570 | 12.574 | 12.588 | 12.611
1.5 |9.431 | 9.440| 9.467 ] 9.511 | 12.571 | 12.578 | 12.598 | 12.631
1.6 |9.434|9.446 | 9.482| 9.541 | 12.573 | 12.582 | 12.609 | 12.654
1.8 |9.439|9.458| 9.515| 9.600 | 12.577 | 12.591 | 12.634 | 12.704
20 |90444)90.471 | 9.552 | 9.684 | 12.581 | 12.601 | 12.661 | 12.761
2.5 19.460|9.500| 9.665] 9.990 | 12.503 | 12.629 | 12.739 | 12.92
3.0 |9.47619.550| 9.77 | 10.1 12.605 | 12.660 | 12.82 | 13.09
3.5 |9.49319.593 [ 9.89 | ... .. 12.619 | 12.692 | 12.91 | 13.3
40 |9.509 9638100 |.. . .. 12.631 | 12.725 1 13.0 13.5

* The first nonvanishing root X’sn is designated as n = 2 rather than n = 1.

Xon{n > 0) are identical.

The root8 X'on¢1 and

The electric- and magnetic-field components of an H,.-mode are
given by Eqs. (1-4), (1-10), and (41) as

&,

g,
Ez

I

S zm(

!
Xi
v %z (x

0,

, T
Xig

sin
me,

CO8

cos

, T
b/ sin

me,

(43a)
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Fia. 2:9.—Field distribution for H-modes in coaxial waveguide.

1. Cross-sectional view

2. Longitudinal view through plane I-]

3. Surface view from s-s
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7
_ X [ _rrYecos
H. = - b Zm (X b) sin ¢
_ " m r\ sin
H¢ - iIl Zm (Xt b) cos ‘I’I’Ld), (43b)
_ A L Xt , T cos
H. >\;; Vi b (X‘ ) sin ™#-

As in the case of the E-modes, the Hn.-mode (m > 0) may possess either
of two polarizations, each characterized by a different voltage and current.
The polar components of the normalized e}’ vectors are obtained from E,
and E; of Egs. (43a) on omission of the z-dependent amplitude V.

For a traveling H...mode the attenuation constant due to finite
conductivity of the guide walls is given by

AR N O]
[a J"(cx') T3 §xi A
n [@1 I nxd) +mb] 1 e
e Jn(ex) SVI - O

A O) R0
T mexs) xi X;
where ®, and ®; are the characteristic resistances of the metals of which
the outer and inner conductors are composed (¢f. Table 1-2).

The total average power carried by a traveling H...-mode in a matched
nondissipative coaxial guide is expressed in terms of the rms voltage V{ as

P=nyl- (x::) V7L (45)

Mode patterns of the instantaneous field distribution in traveling
waves of the Hy,, Hay, and Hj, coaxial modes are shown in Fig. 2-9. The
patterns pertain to coaxial guides with a/b = 3 and A\;/a = 4.24. The
patterns on the left depict the electric and magnetic field distribution in
transverse and longitudinal planes on which the transverse electric field
is a maximum; those on the right portray the magnetic-field and electric-
current distribution on half the circumference of the outer conductor.

2-6. Elliptical Waveguides.!'—An elliptical waveguide is a uniform
region in which the transverse cross section is of elliptical form. As

(44)

1Cf. L. J. Chu, “Electromagnetic Waves in Elliptic Hollow Pipes,” Jour. Applied
Phys., 9, September, 1938. Stratton, Morse, Chu, Hutner, Elliptic Cylinder and
Spheroidal Wavefunctions, Wiley, 1941.
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illustrated in Fig. 2-10 elliptic coordinates £y (the coordinate 7 is not to
be confused with the free-space admittance 7 employed elsewhere in this
volume) describe the cross section and the coordinate z the transmission
direction. The rectangular coordinates xy of the cross section are related
to the coordinates of the confocal ellipse ¢ and confocal hyperbola » by

z = ¢ coshf cosy,
y = g sinh¢ siny, (46)
where 2¢ is the focal distance. The boundary ellipse is defined by the
coordinate ¢ = a with major axis, minor axis, and eccentricity given
by 2q cosh a, 2¢ sinh @, and ¢ =

1/cosh a, respectively. The case v
of a circular boundary is described
by e = ¢ = 0 with ¢/e finite.

The mode functions e; charac- ¢
teristic of the E-modes are deriv- ?
able from scalar functions of the —2¢] z
form \\_

ed)i = Rem(EMX‘i)SGM(T’ﬂXi)) (47(1)
qu; ROm(E;DXi)Som(n;OXi)} (471))

where m =0, 1, 2, 3, - - + and
eXi = cXmn 18 the nth nonvanishing
root of the even mth-order radial Mathieu function Re.(a,x), whereas
oXi = oXmn 18 the mth nonvanishing root of the odd mth-order radial
Mathieu function Ron(a,x). The functions Sen.(n,x) and Son.(n,x) are
even and odd angular Mathieu functions. In the limit of small x = k.g
the Mathieu functions degenerate into circular functions as follows:

F1a. 2:10.—Elliptical waveguide cross section.

lim Sen(n,x) = cos mg,
x—0

lim Som(n,x) = sin mé¢,
x—0

(48)
lirré Ren(§,x) = lin% Ronm(§,x) = \f—zr Jm(ker),

and, correspondingly, the confocal coordinates ¢ and % become the polar
coordinates r and ¢.

The field components of the even .En.-mode follow from Egs. (1-3),
(1-10), and (47a) as

EE - _V: Re:n(gyexi)seM(ﬂ;eXi)

g Vcosh? £ — cos? g

B, = — vy Fenlbox)Sen(nex)

9 /cosh? £ — cos?y

N L,
_Jr T Il' ekciRem(Eyexi)sem(n;exi)y

’

(49a)

E,
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1 Benlbxi)Sem(n,xs)

H ‘g v/cosh? § — cos? 1)’

H,, — _II Re:n(fyexi)sem("’yeg, (49b)
) q v/cosh? £ — cos? ¢

H, =0

The prime denotes the derivative with respect to £ or 7, and .k, = 2n/\,;
denotes the cutoff wavenumber of the even mn mode. The z dependence
of the fields is determined by the transmission-line behavior of the mode
amplitudes V; and I]. The odd (En,.-mode is represented in the same
manner as in Eqgs. (49) save for the replacement of the even Mathieu func-
tions by the odd. The components of the mode functions e} are obtained
from E; and E, of Egs. (49a) on omission of the amplitude V;and insertion
of a normalization factor.

. The e-mode functions characteristic of the H-modes in elliptical
guides are derivable from scalar functions of the form

C‘I,\' = Rem(syexs)se"'(nyexz)’ (500)
o = Ron(E,0x))Som(m axl), (50b)
wherem =0, 1,2, 3, - - -, and .x} = oxfn a0nd oX! = oXp, are the nth

nonvanishing roots of the derivatives of the radial Mathieu functions as
defined by
Re:n(aﬁex:) = 0:
Ro,(a,0x;) = 0. (51)
The field components of the even H.,,-mode are given by Egs. (1-4),
(1-10), and (50a) as
7 ! !
EE = -—Vl” Rem(g,eXi)Sem("I,eXi) ,
q V' cosh? ¢ — cos?n
i Bem (& exi)Sem(n,ex?) (52)
' ¢ \/cosh? § — cos? g
= ()’
' ! !
Hy= -1 Rep (§,.x0)Sem(n,exi) ,
q v/cosh? £ — cos? g

E, =V

S

r I ’
H = -1V Ren(t, o) Sen(naxt) (53)
g Vcosh? £ — cos? n
y x Vl” 7" ! 7
H‘ = _.7 —)\/_' T EkciRem(Eyﬂxi)Sem(n;eX€)'

The field components of the odd ¢H...-mode are obtained from Egs. (52) and
(53) on replacement of the even Mathieu functions by the odd. The com-
ponents of the e/’ mode functions are obtained from E; and E, on omis-
sion of the mode amplitude V{’ and addition of a normalization factor.
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The cutoff wavelengths of the E- and H-modes may be expressed in
terms of the roots x; and the semifocal distance ¢ as

2wq
Xi

REi =

; (54)

on omission of the various mode designations. An alternative expression
in terms of the eccentricity e of the boundary ellipse is obtained by use
of the elliptic integral formula for the circumference

2x
. = g/ VT = et dn = 4 E(e) (55)
0

of the boundary ellipse. The ratio )\./s is plotted vs. ¢ in Fig. 2-11 for
several of the even and odd E- and H-modes of largest cutoff wavelengths.
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F1a. 2:-11.—Cutoff wavelengths of elliptical waveguide.

It is evident from the figure that the .H,:-mode is the dominant mode in
an elliptical waveguide. The splitting of the degenerate modes (m > 0,
e = 0) of a circular guide into even and odd modes is also evident from
this figure.

Computation of power flow and attenuation in elliptical guides
involves numerical integration of the Mathieu functions over the guide
cross section. The reader is referred to Chu’s paper quoted above for
quantitative information.

Mode patterns of the transverse electric and magnetic field distribu-
tion of several of the lower modes in an elliptical guide of eccentricity
e = 0.75 are shown in Fig. 2-12. The patterns are for the ,Hoi, H11,
oHu, aEDl, eEll, and oE, -modes.
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Fig. 2:12,—Field distribution of modes in elliptical waveguide. Cross-sectional view.

2-6. Space as a Uniform Waveguide. a. Fields in Free Space.—Free
space may be regarded as a uniform waveguide having infinite cross-
sectional dimensions. A transmission-line description of the fields within
free space can be developed in a manner similar to that of the preceding
sections. The cross-sectional directions will be described by the zy
coordinates and the transmission direction by the z coordinate of a rec-
tangular coordinate system as shown in Fig. 2-13. In this coordinate
system the general electromagnetic field can be expressed as a superposi-
tion of an infinite set of E-and H-modes closely related to those employed
for rectangular guides (cf. Sec. 2-2). In the absence of geometrical
structures imposing periodicity requirements on the field, the required
modes form a continuous set of plane waves, each wave being character-
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ized by a wave number k indicative of the direction of propagation and
wavelength.

The e} vector functions character- y
istic of the F-modes are derivable
from scalar functions of the form

& ¥ . eitkeztkan) (56)
(S L .7 f—kz + k?l’
where — 0 <k, < 0, —0 <k, <

«, and 7 is an index indicative of the

mode with wave numbers k. in the 2 —
direction and ky in th.e y_dlreCtlon' Fig. 2:13.—Coordinate systems for
The question of normalization will be waves in space.

Rectangular coordinates z,y,z

left open for the moment. Polar and azimuthal angles 8,¢

By Eqgs. (1-3), (1-10), and (56)
the field components of the E;-mode can be written as

E,=V! _k’_ gilkaathuy)

VR TR
’ k ke .
E, =V, kzhv—i—kf, ¢itksr k) 5% T
Vv x [ 23
E, = wii V kI + kE itz than, E
H,=-T Vk”_ efhezthyy) (r
k2 + k2 ’ .
H, = ];_f; gilkarthn) (576)
VEE+ k2 P
Hz = 0 A

The z dependence of this mode is determined by the transmission-line
behavior of the mode voltage V] and current 17, which obey the uniform-
line equations (1-11). On introduction of the new variables

k. = k sin 8 cos ¢, tanq&:%,
A/ 2 2
ky = k sin 6 sin ¢, sin § = _%, (58)
2w
k= o

it is evident from Fig. 2-13 that an Er-mode with /%2 + k% < k, repre-
sents a propagating plane wave whose wave vector k is characterized by
polar angle 6 and azimuthal angle ¢. The magnetic field of this mode is

bl in e e

L -

b . N e L

-
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linearly polarized and lies wholly in the transverse zy plane at the angle
¢ + 7/2.

The e’ vector function characteristic of an Hi;-mode is derivable from
a scalar function (56) of the same form as for the E;-mode. The field
components of the H,-mode follow from Eqgs. (1-4), (1-10), and (56) as

ky

Ez — :‘/ ej(k,::+kw),
R
E, = =-V" — ke 7 (kzz+kyu) (59(1)
v VLR ’
z v
E. =0,
k )
H, = IL{’ P S e:(kzz+kv1/)’
NCEY:
k )
Hy = ;’ ‘\/-_ka?yT—kz_ el(k:I'H‘vll), (59b)
z v
H, = _I/_;:, VkZ -+ k: ei(kzz+k,,w’
W,

where again the z dependence of the mode field is given by the trans-
mission-line behavior of the mode voltage V.’ and current I;. On sub-
stitution of Eqs. (58) it isseen that a traveling H;-mode with vk + £k} < k
is a plane wave whose wave vector k points in the direction specified by
the polar angle 8 and the azimuthal angle ¢. The electric field of the
H:-mode lies entirely in the zy plane and is linearly polarized at the
angle ¢ — 7/2.

The cross-sectional wave numbers of both the E;- and H;-modes are
identical and equal to

S 2 2¢ .
ko = VEE+ k2 = Py sin 6. (60a)
By Eqgs. (1-11b) it follows that
A
o) (600)

From the dependence of the cross-sectional wave number on A it is
apparent that mode propagation ceases when \/k + k% > L, i.e., when 6
is imaginary.

The power flow per unit area in the z direction can be expressed
in terms of the rms mode voltage V; as

{
P, = E— Vi = |V (61a)
A cos @
- (%)

for the case of a propagating E;-mode or as
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P, = E A 2 "o __ 2
2 . 1_)\_- |VE2 = 5 cos 6]V (61b)

for the case of a propagating H;-mode.

The dominant E- and H-modes are obtained from Eqs. (57) and (59)
by first placing k. = 0 and then k, = 0, or conversely. These modes are
evidently TEM waves with the nonvanishing components

E, = Vi), E. = Vi@, }

H, = -I)(z), H, =TI (62)

and are seen to be polarized at right angles to one another. The wave-
length \, of propagation in the z direction is equal to the free-space
wavelength X for these modes.
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Fie. 2-14.—Atmospheric attenuation of plane waves. (a) Atmosphere composed of 10
gm. of water vapor per cubic meter. (b) Atmosphere composed of 20 per cent oxygen at
a total pressure of 76 cm. Hg.

The attenuation constant of plane waves in free space is determined
solely by the dielectric losses in the atmosphere of the space. Because
of the importance of this type of attenuation at ultrahigh frequencies
theoretical curves of the attenuation (8.686«), in decibels per kilometer,
due to presence of oxygen and water vapor, are shown in Fig. 2:14 as a
function of wavelength.



88 TRANSMISSION-LINE MODES [SEc. 26

b. Field in the Vicinity of Gratings.—The analysis of the electro-
magnetic field in the vicinity of periodic structures, such as gratings in
free space, is in many respects simpler than in the case where no perio-
dicity exists. Instead of a continuous infinity of modes, as in Sec. 2-6a, a
denumerably infinite set of E- and H-modes is present with only discrete
values of k; and k,, When the excitation and geometrical structure is
such that the field has a spatial periodicity of period ¢ and b in the trans-
verse z and y directions, respectively, the only permissible values of
k. and k, are

k:=2—1ra7lly m =0, =1, +2, y
(63)
k,,=3§’f, n=0,+1, +2,

A situation of this sort obtains, for example, when a uniform plane wave
falls normally upon a planar grating having a structural periodicity of
length a in the z direction and b in the y direction. The E;- and H;-modes
in such a space are given by Egs. (57) and (59) with %, and %, as in Egs.
(63). The cutoff wavelengths of the E;- and H;-modes are both equal

to
27 \Vab
Ao = = : (64)
VETE Jul s

which is characteristic of the wavelength below which the plane waves
are propagating and above which they are damped. On introduction
of the substitution (58) it is apparent that these modes can be interpreted
in terms of a discrete set of plane waves (diffracted orders) defined by the
angles ¢ and ¢. In many practical cases the excitation and dimensions
are such that N > a > b, and hence only a single mode, one of the
dominant modes shown in Egs. (62), can be propagated. As a conse-
quence the field is almost everywhere described by the voltage and current
of this one mode.

A similar mode analysis can be applied to describe the fields in the
vicinity of a periodic structure when the excitation consists of a plane
wave incident at the oblique angles 8’ and ¢’. If the spatial periodicity
of the structure is again defined by the periods a and b in the x and y
directions, the only permissible E- and H-modes, shown in Egs. (57) and
(59), are those for which

(65)
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where k? = k sin 6’ cos ¢’ and &k, = k sin 6’ sin ¢’ are the wave numbers
of the incident excitation. The cross-sectional wave number of both the
E;- and the H;-mode equals

. 1] N\ 2 . Y N\ 2
ke = 2 12_5m0c0s¢ 7_L__sm0s1n¢ =2_1r]
i \/ (a X o ) N~ (09

and as in the previous case these wave numbers characterize a discrete
set of plane waves (or diffracted orders).

Frequently the excitation and dimensions are such that only the
dominant mode (m = n = 0) with k. = k; and k, = k; is propagating.
For example, if ¢’ = 0 and a > b, this situation obtains, as can be seen
from Eq. (66), when

A > a(l 4 sin §) = A,

i.e., when the next higher diffraction order does not propagate. Under
these conditions the dominant mode voltage and current describe the
field almost everywhere.

The components of the e} vectors are obtained from the E. and E,
components of the mode fields of Eqs. (57a¢) and (59a) on omission of the
mode amplitudes. The normalization of the e; vector functions has not
been explicitly stated since it depends on whether the mode index 7 is
continuous or discrete. For a continuous index 7, e; must be divided
by 27 to obtain a vector function normalized over the infinite cross section
to a delta function of the form &§(k: — k;) 8(k, — k;).! For discrete
index %, e; should be divided by /ab to obtain, in accordance with Egs.
(1-5), a vector function normalized to unity over a cross section of
dimensions a by b.

2-7. Radial Waveguides. a. Cylindrical Cross Sections.—An example
of a nonuniform region in which the transverse cross sections are com-
plete cylindrical surfaces of height b is provided by the radial waveguide
illustrated in Fig. 2-15. In the r¢z polar coordinate system appropriate
to regions of this type, the transverse cross sections are ¢z surfaces and
transmission is in the direction of the radius ». Radial waveguides are
encountered in many of the resonant cavities employed in ultra high-
frequency oscillator tubes, filters, ete.; free space can also be regarded as
a radial waveguide of infinite height. As stated in Sec. 1-7 the transverse
electromagnetic field in radial waveguides cannot be represented, in
general, as a superposition of transverse vector modes. There exists
_only a scalar representation that, for no H, field, is expressible in terms of
E-type modes and, for no E. field, in terms of H-type modes.

1 The delta function 8(z — z’) is defined by the conditions that its integral be
unity if the interval of integration includes the point z’ and be zero otherwise.



90 TRANSMISSION-LINE MODES [Sec. 2-7
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F1a. 2-15.—Radial waveguide of cylindrical cross section.

E-type modes.—The field components of an E-type mode in the
radial guide of Fig. 2.15 can be represented as

r €n nr  COs
E, = — V-cosizsinmda,
_ y e m mr . mr sin
E.=3FV brar b B Z cos mé, (67a)
e SmTm T COS
Be= = Lgh 5550 % gin ™%
H, =0,
= '_"' nw  COS
H, =1I cos gz o me, &7)
km nw  sin
= +pV & Ll
H, _JnV,b o7 08 zcosm¢’
where
2
Kn = k’—(—%’r):
& =1 if n =0,
€6 =2 if n # 0,
m=0123 -+, =n=012S3,

The z dependence of the E-type modes is determined by the transmission-
line behavior of the mode voltage V! and current I.. The latter quanti-
ties satisfy the transmission-line equations (1-64) with

Zl=¢ ben "_12»,
* 2nre, Kik

K= \/kz - ("—;’)' - (?) (©)
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For either m = 0 or n = 0 the transverse electric and magnetic fields of
each mode have only a single component. As is evident from the form
of Egs. (67) there exist two independent E...-type modes with different
¢ polarizations; the amplitudes of these degenerate modes are different
from each other although this has not been explicitly indicated.

In a radial waveguide the concept of guide wavelength loses its
customary significance because of the nonperiodic nature of the field
variation in the transmission direction. Consequently the usual relation
between guide wavelength and cutoff wavelength is no longer valid.
However, the cutoff wavelength, defined as the wavelength at which
x; = 0, is still useful as an indication of the “propagating” or ‘‘non-
propagating’’ character of a mode. For an E-type mode the cutoff
wavelength is

1
’

Ni = ey (69)
V&) + ()

and its dependence on r indicates that the mode is propagating in those
regions for which A < \/; and nonpropagating when A > A.,.

In terms of the rms mode voltage and current the total outward power
flow in an E-type mode is Re (V(I/*). For computations of power on a
matched line it should be noted that the input admittance of a matched
radial line is not equal to its characteristic admittance [¢f. Eq. (1-74)].

The dominant E-type mode in the radial waveguide of Fig. 2-15 is
the m = n = 0 mode and is seen to be a transverse electromagnetic
mode. The nonvanishing field components of this TEM-mode follow
from Eqs. (67) as (omitting the mode designations)

g - -Y0
z b ;
(70a)

and the corresponding characteristic impedance and mode constant as
b
Z = ¢ g‘r and k. (701))

Frequently the excitation and guide dimensions are such that the domi-
nant mode characterizes the field almost everywhere. The total outward
power carried by the dominant mode at any point r in a matched non-
dissipative radial guide is

2mr 2

P = TITW IV(T)P:

(71)

as is evident from the power relation and Egs. (1-74); the function ho(kr)
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is the amplitude of the zeroth-order Hankel function and is defined in
Eq. (1-80).

H-type modes—The field components of an H-type mode in the
radial guide of Fig. 215 are given by

E, =0,
,,_,,, nr  sin
Ey, =V, sin b cos me, (720)
” e,.k m nw _ cos
E, = F j¢l; sm b % cin me,
_ qu € MW sin
H, =1 p Sin zcosm4>,
y € MM nw  Cos
Hy = I D kar Knb cos D z sin me, (72b)
. 1 €m ’ﬂ1r sin
H, gV 2rr kb D % cos me,
where
/7 \2
. nw
== (%),
m=0,1,2 - . n=1,23,

The z-dependent mode voltage V!’ and current I’ obey the radial
transmission-line equations (1-:64) with

2nre, k'K
-
bem k2

n

o \/k2 ~ (%)2 B <%)2 (73)

The existence of two distinct Hn.-type modes with different ¢ polariza-
tions is to be noted.

The cutoff wavelength of the Hn.-type mode is identical with that
of the E,.-type mode and, as in the latter case, is indicative of regions
of propagation and nonpropagation. The total outward power flow in
an H-type mode is given in terms of the rms mode voltage and current by
Re (VI'I'*).

The dominant H-type mode in the radial guide of Fig. 2-15 is the
m =0, n = 1 mode. The nonvanishing field components of this mode
can be written as

le=g_

V . =
E.,———Esmgz,
T
x—TSI.nEZ, (74)

.V A
H, —IN g gp COS § 2
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on omission of the distinguishing mode indices. The characteristic
impedance and mode constant of the dominant H-type mode are

T 7/ \?
z=:TE ang x=\/k’—(%>- (75)

The total outward power flow carried by the dominant H-type mode in a
matched nondissipative radial line is

dmr k 2
P = IT TR (k) (2. (76)

b. Cylindrical Sector Cross Sections.—Another example of a radial
waveguide is provided by the nonuniform region illustrated in Fig. 2-16.

/

[ 4 z -
)
!
r A 4 VA A
(a) General view (b) Side view

F1a. 2-16.—Radial waveguide of sectoral cross section,

In the r¢z coordinate system indicated therein the cross-sectional surfaces
are cylindrical sectors of aperture & and height b.

E-type modes—In the above type of radial waveguide the field
components of an E-type mode are

€n nmr mm

— _yr & 22z sin —-
E, = V‘bcos T 2 sin & @,
, €&, MoT N . N mm
E, = PP rd ey Sin g zeos & ?, (77a)
. 2 nr . nw mmw
= et L 2T — zsin —
E, = —jI! S5 S0 2sing ¢,
Hz=07
, 2 nw ._mw
H, =1 3 008 - zsin = &, (770)
H,= —jn §%§%cos%rzcosm¢’

[}
where
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The z dependence of this E..-type mode is determined by the trans-
mission-line behavior of the mode voltage V! and current I, as given by
Eqgs. (1-64) with

2b &2
= ., r®e, 'k

o () - ()

The cutoff wavelength of the E,..-type mode is

(78

o= m—l‘*——_w~ (79)

Mo n\’ m\*

V) ()
and as before is indicative of the regions of propagation and nonpropaga-
tlOn’i‘he dominant E-type mode in the radial waveguide of Fig. 2-16 is

the m = 1, n = 0 mode. The nonvanishing field components of this
mode are (omitting mode indices)

v
E, = — 3 sin — dz,

27
H, = 5 sin - ¢, (80)

™

.V >\
H, = -]nfﬁcos?{;qi

The characteristic impedance and mode constant are

N\
z=§§g§ and x’=—-\/k2—-(%>; (81)

and the transmission-line behavior is described in terms of the “standing
waves’’

I e (kr) and N o(kr). (82)

In terms of the dominant-mode rms voltage V the total outward power
in a matched nondissipative guide is

rd® &

P=15% 1rlcrh2

S VO (83)

H-type modes.—The field components of an H-type mode in the
radial waveguide of Fig. 2-16 are
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E, =0,
= ”6_'" nr ﬂ
E, =7V sin p 2 cos ?, (84a)
w k r .
E, —Jﬁ‘I"e m;’; %zsm—;zt,
H, = I”e—b" sn%zcos";r¢,
n T .
Hy = —1I! Eb K,,:b :“;) cos 1%” z sin %lr ¢, (84b)
sy Em T mr
H, = —jgV! & Tp 0 b 2 cos ¢,
where
kn = k2 — (X :
" b
m=20,1,23, - - -, n=12 3,

The z-dependent mode voltage V{’ and current I satisfy the radial trans-
mission-line equations (1-64) with

r®Pe, K| k
be, K2

le__g. .

¢ == (5) - ()

The cutoff wavelength is the same as that given in Eq. (79) for an E,..-
type mode. The total outward mode power is given by Re (VI'I™").

The dominant H-type mode is the (m = 0, n = 1)-mode. The
nonvanishing field components of the dominant H-type mode are (omit-
ting mode indices)

(85)

. m
E¢ = E sSin —6 z,
21 .«
H, = 3 sin 3 % (86)
.V ™
H, = —Jn G o8 &
The characteristic impedance and mode constant are
_ rd k _ ,\/ﬂz _ 1r_2_
Cop and = Alk (7)) (87)

The transmission-line behavior of the dominant H-type mode is expressed

in terms of the standing waves

Jo(KT)

and

No(xr).
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The total outward power flow transported by this dominant mode in a
matched nondissipative sectoral guide can be expressed in terms of the
rms current I as

rd k 2
P = fﬁzm ()2 (88)

2-8. Spherical Waveguides.! a. Fields in Free Space.—On introduc-
tion of a r6¢ spherical coordinate
system, as shown in Fig. 2-17, it
is evident that free space may be
regarded as a nonuniform trans-
L mission region or spherical wave-
guide. The transmission direc-
| tion is along the radius r and the
i -+ cross sections transverse thereto
|

F4

are complete spherical surfaces
described by the coordinates 6 and
é ¢. In practice many spherical
cavities may be conveniently re-

garded as terminated spherical
Fia. 2:17.—Spherical coordinate system for guides
waves in space. '

T

The e¢’-mode functions charac-
teristic of the E-modes in a spherical guide are derivable from scalar
functions

b, =¥, =Z—V1—.-P:'"(COS ) ;Ons me, (89)
where

N2 _4_1rn(n+1) (n + m)!

T e 2ntl n—m?

m=0,1,2++"n—1n

n=1213, - ",

en = 1 ifm =

and Pm(cos ) is the associated Legendre function of order n and degree
m. Typical Legendre functions of argument cos 8 are

Po = ].,

P, = cos §, P} = —sin 4,

P, = $@B cos?2 0 — 1), Pl = —3sinfcosfd, P:=3sin?g,} (90)
P;=340bcos® 0 —3cosh), Pi= —%sind(5cos®f — 1),

P% = 15 sin? 6 cos 9, P} = —15sin? 6.

1Cf. 8. A. Schelkunoff, Electromagnetic Waves, Chaps. 10 and 11, Van Nostrand,
1943.
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By Egs. (1-3), (1-10), and (89) the field components of the E..-mode are

Vi 1 dP7 (cos @) cos

S P TR
E, = + Z'N o P’"(cos 0) @, (91a)
I'n(n —+— 1
B, = - )Pm(cos 0 < mo,
I m sin
o= 5 3 s g TR0 0) g M9,
_ _ I} 1 dPp(cos 8) cos (918)
Ho==3N,""d8  sin ™%
H, =0,

where the degeneracy of the E,.-mode is indicated by the two possible
polarizations in ¢. The r dependence of the fields is determined by
the mode voltage V] and current I;. These quantities obey the spherical
transmission-line equations (1:94). The components of the mode
functions e normalized according to Egs. (1-5) with dS = sinf df do¢
are obtained from Es and E, of Eq. (91a) on omission of the amplitude
factor V./r. The outward power carried by the ith mode is Re (V.I}).

The dominant mode in a spherical waveguide is the electric dipole
mode n = 1. For the case of circular symmetry (m = 0) the non-
vanishing components of this mode are

Ey = g\/i sin 8,

E, = —j2= o) \/— cos 8, (92)

H¢ = ;Jg;sln 0,

on omission of the mode designations. In terms of the rms voltage V
the total power carried by an outward traveling dominant mode is (cf.
Sec. 1-8)

- n 2
P=——— V(). (93)

T G T Gy

The e!-mode functions characteristic of the H-modes in a spheriecal
waveguide are derivable from the scalar functions shown in Eq. (89).
The field components of the H,.,-mode follow from Egs. (1-4), (1-10),
and (89) as
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Eo = + VT'{'N%,P:(COS 5) zlons mé, )
=0 1 dP?(cos 6) cos
Ho = —IT‘N.”T sin me,
H, =+ 17’ #M Pr(cos 6) 210“5 me, (94b)
H, = —j¢ I:_él %_i:—l) Pm(cos 6) z:)ns me.

The r dependence of the mode fields is determined by the spherical
transmission-line behavior of the mode voltage V! and current I;”. The
components of the normalized mode function are obtained from E,
and E, of Eq. (94b) on omission of the amplitude factor V) /7.

Longitudinal view Cross sectional view
F1G. 2:18.—Conical waveguide.

As for the case of modes in a radial waveguide, the concepts of cutoff
wavelength and guide wavelength lose their customary significance in a
spherical guide because of the lack of spatial periodicity along the trans-
mission direction. The cutoff wavelength

2nr
VT )

of both the E..- and H,.-modes is, however, indicative of the regions
wherein these modes are propagating or nonpropagating. For regions
such that A < A the mode fields decay spatially like 1/r and hence may
be termed “propagating’’; conversely for A > \.; the mode fields decay
faster than 1/r and may, therefore, be termed ‘“nonpropagating.”

b. Conical Waveguides.—A typical conical waveguide together with
its associated spherical coordinate system rf¢ is illustrated in Fig. 2-18.

xci =

el e ot e o e
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The transmission direction is along the radius r, and the cross sections
transverse thereto are 8¢ spherical surfaces bounded by cones of aperture
8, and 8,. The conical waveguide is seen to bear the same relation to a
spherical waveguide that a coaxial guide bears to a circular guide.
Examples of conical guides are provided by tapered sections in coaxial
guide, conical antennas, etc.

The dominant E-mode in the conical guide of Fig. 2-18 is a transverse
electromagnetic mode whose nonvanishing components are

B - vV 1
’ , cot (6:/2) sin g
cot (8,/2) (96)
I 1
H, = 2nr sin 0

The r dependence of the dominant mode voltage V and current I is
determined by the spherical transmission-line equations (1-94); for this
case of the dominant (n = 0) mode these reduce to uniform transmission-
line equations. The choice of normalization is such that the character-
jstic impedance and propagation wave number are

_ ¢ cot (6:/2) _
7z = Zr In m and K = k. (97)

The total outward dominant-mode power flow in a matched nondissipa-
tive conical guide is correspondingly

= 5 SR o) (98)

The cutoff wavelength of the dominant mode is infinite.

The attenuation constant of the dominant mode in a conical guide is a
function of r and is given by

— &/ ®Ra/¢ 1
«= (r sin 6; + r sin 02) 91 cot (6,/2) (99)
T Cot (62/2)

where ®; and ®, are the characteristic resistances (¢f. Table 1-2) of
the inner and outer metallic cones.

The e; mode functions characteristic of the E-modes in a conical
guide are derivable by Eqs. (1-3) from scalar functions of the form

& = [Pr(cos 8)P™(— cos 6,) — Pm(— cos 8) P™(cos )] S"IO: me, (100)




100 TRANSMISSION-LINE MODES [Sec. 2.8
where the indices » (nonintegral in general) are determined by the roots of
Pr(cos 8:)P7(— cos 81) — Pr(~ cos 6,)P7(cos 8,) = 0,

where m = 0,1,2,3, - - - . The e mode functions characteristic of
the H-modes are derivable by Eqs. (1.4) from secalar functions

dPm(— cos 8,) dP™(cos 8,)
_— E——e - tl

¥; = P7(cos 6) 7 — P7(— cos 6) 76 (101)
where the indices n are the roots of
dPy(cos 8,) dP7(— cos 1)  dPp(— cos 8y) dP7(cos 6) —0
do df de do
where m =0, 1, 2,3, - + - . The lack of adequate tabulations both

of the roots n and of the fractional order Legendre functions does not
justify a detailed representation of the field components of the higher
modes. The special case, 6; = v — 8:, of a conical antenna has been
investigated in some detail by Schelkunoff (loc. cit.).
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CHAPTER 3
MICROWAVE NETWORKS

3-1. Representation of Waveguide Discontinuities.—Waveguide struc-
tures are composite regions containing not only uniform or nonuniform
waveguide regions but also discontinuity regions. The latter are
regions wherein there exist discontinuities in cross-sectional shape; these
discontinuities may occur within or at the junction of waveguide regions.
As indicated in the preceding chapters the fields within each of the wave-
guide regions are usually completely described by only a single propa-
gating mode. In contrast the complete description of the fields within a
discontinuity region generally requires, in addition to the dominant
propagating mode, an infinity of nonpropagating modes. Since a
waveguide region can be represented by a single transmission line
appropriate to the propagating mode, it might be expected that the
representation of the discontinuity regions would require an infinity of
transmission lines. This expectation is essentially correct but unnecessar-
ily complicated. The nonpropagating nature of the higher-mode
transmission lines restricts the complication in field description to the
immediate vicinity of the discontinuity. Hence, the discontinuity
fields can be effectively regarded as “lumped.” The effect of these
lumped discontinuities is to introduce corresponding discontinuities into
the otherwise continuous spatial variation of the dominant-mode voltage
and current on the transmission lines representative of the propagating
modes in the over-all microwave structure. Such voltage-current dis-
continuities can be represented by means of lumped-constant equivalent
circuits. The equivalent circuits representative of the discontinuities
together with the transmission lines representative of the associated wave-
guides comprise a microwave network that serves to describe the fields
almost everywhere within a general waveguide structure. The present
chapter is principally concerned with the general nature and properties
of the parameters that characterize such microwave networks.

The determination of the fields within a waveguide structure is
primarily an electromagnetic-boundary-value problem. An electro-
magnetic-boundary-value problem involves the determination of the
electric field E and magnetic field H at every point within a closed region
of space. These fields are required to satisfy the Maxwell field equations

and to assume prescribed values on the boundary surface enclosing tl\e e
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given region. According to a fundamental theorem a unique solution to
this problem exists if the tangential component of either the electric field
or the magnetic field is specified at the boundary surface. The reformu-
lation of this field problem in terms of conventional network concepts
will be illustrated for a general type of waveguide structure.

a. Impedance Representation—A typical waveguide structure is
depicted in Fig. 3-1. The over-all structure is composed of a discon-
tinuity, or junction, region J and a number of arbitrary waveguide regions

1, . . ., N. The boundary conditions appropriate to this structure are
AL -
L
S
S S
J
\

Fia. 3-1.—Junction of N waveguides.

that the electric-field components tangential to the metallic boundary
surface S, indicated by solid lines, vanish and that the magnetic-field com-
ponents tangential to the ‘“terminal,’”’ or boundary, surfaces 7y, . . . , Ty,
indicated by dashed lines, assume prescribed but arbitrary values. It is
further assumed that the dimensions and frequency of excitation are such
that only a single mode can be propagated in each of the waveguide
regions although this is not a necessary restriction. It is thereby
implied that the terminal surfaces Ty, . . . , Ty are so far removed from
the junction region J that the fields at each terminal surface are of
dominant-mode type. Consequently the tangential electric field E, and
magnetic field H; at any terminal surface 7, may be completely charac-
terized by the equations (¢f. Sec. 1-3)

E,(x,y,z,,.) = Vm €,

Ht(z,y,zm) = Im hm, hm = Zgm X €n, (1)

where e, and h., are the vector mode functions indicative of the cross-
sectional form of the dominant mode in the mth guide, where z,, denotes
the outward unit vector along the axes of the mth guide, and where the
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voltage V. and current I., denote the rms amplitudes of the respective
fields at 7T,; the normalization is such that Re (V.lI}) represents the
average power flowing in the mth guide toward the junction region.

The above-quoted uniqueness theorem states that the electric field
within the space enclosed by the terminal surfaces is uniquely determined
by the tangential magnetic fields or, equivalently, by the currents I,,
..., Iy at the terminals Ty, . . . , Tx. In particular the tangential
electric fields or, equivalently, the voltages V,, . . . , Vy at the terminal
surfaces Ty, . . . , T'v are determined by the currentsI,, . . . ,Iy. The
linear nature of the field equations makes it possible to deduce the form
of the relations between the voltages and currents at the various terminals
without the necessity of solving the field equations. By linearity it is
evident that the voltages Vi, . . . , Vy set up by the current I,, or I,,

. or Iy acting alone must be of the form

Vl = Z11]1, V1 = lefz, V1 = ZLVIN
Vz = Z2111, Vz = Z2212, Vz = Z2NIN,

Ve = ZNIII, Vv = ZNZI?., VN = ZNNIN,S

where the Z,, are proportionality factors, or impedance coefficients,
indicative of the voltage set up at the terminal 7', by a unit current acting
only at the terminal T,.. By superposition the voltages resulting from
the simultaneous action of all the currents are given by

V., = Znly + Ziode + ¢ ¢ +Z1NIN,
V, = Zanl, + Zoslo + » -+ +Z2NIN,
Vv = Znid: + Zyds + + -+ +ZynIx.

These so-called network equations, which completely describe the behavior
of the propagating modes in the given microwave structure, are frequently
characterized simply by the array of impedance coefficients

Zyw Zy v ZlN

Zzl Z22 v Zzzv
7 = . e e e ,

Zyi Zys v - Zyx

called the impedance matrix of the structure.
The foregoing analysis of an N terminal pair microwave structure is
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the exact analogue of the familiar Kirchhoff mesh analysis of an n ter-
minal pair low-frequency electrical structure. As in the latter case,
many properties of the impedance coefficients Z..,, may be deduced from
general considerations without the necessity of solving any field equations.
The more important of these properties are Z,,, = Z.» and Re (Z.,) = 0.
With appropriate voltage-current definitions (¢f. Chap. 2) the former of
these relations are generally valid, whereas the latter pertain only to
nondissipative structures. In addition to the above, many useful proper-
ties may be derived if certain geometrical symmetries exist in a wave-
guide structure. Such symmetries impose definite relations among the
network parameters Zn. (¢f. Sec. 3-2)—relations, it is to be stressed, that
can be ascertained without the necessity of solving any field equations.
These relations reduce the number of unknown parameters and often
yield important qualitative information about the properties of micro-
wave structures.

The form of the network equations (3) together with the reciprocity
relations Z,., = Z.» imply the existence of a lumped-constant equivalent
circuit which provides both a schematic representation and a structural
equivalent of the relations between the voltages and currents at the
terminals of the given microwave structure. This equivalent circuit, or
network representation, provides no information not contained in the
original network equations, but nevertheless serves the purpose of casting
the results of field calculations in a conventional engineering mold from
which information can be derived by standard engineering calculations.
In view of this representation, the boundary-value problem of the
determination of the relations between the far transverse electric and
magnetic fields on the terminal surfaces is seen to be reformulated as a
network problem of the determination of the impedance parameters
Zmn. These parameters may be determined either theoretically from the
field equations or experimentally by standing-wave measurements on
the structure. In either case it is evident that the impedance parameters
provide a rigorous description of the dominant modes at the terminal
surfaces and hence of the electromagnetic fields almost everywhere.
This “far’’ description, of course, does not include a detailed analysis of
the fields in the immediate vicinity of the discontinuities.

In the reformulation of the field description as a network problem
the choice of terminal planes is seen to be somewhat arbitrary. This
arbitrariness implies the existence of a variety of equivalent networks for
the representation of a waveguide structure. Any one of these networks
completely characterizes the far field behavior. No general criterion
exists to determine which of the equivalent networks is most appro-
priate. This ambiguous situation does not prevail for the case of lumped
low-frequency networks, because there is generally no ambiguity in the
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choice of terminals of a lumped circuit. However, even at low frequencies
there are, in general, many circuits equivalent to any given one, but
usually there is a ‘““natural’”” one distinguished by having a minimum
number of impedance elements of simple frequency variation. It is
doubtful whether a corresponding ‘““natural’ network exists, in general,
for any given waveguide structure. In special cases, however, the same
criteria of a minimum number of network parameters, simple frequency
dependence, etc., can be employed to determine the best network repre-
sentation. These determinations are facilitated by the ability to trans-
form from a representation at one set of terminal plahes to that at another
(cf. Sec. 3-3).

Various definitions of voltage and current may be employed as meas-
ures of the transverse fields in waveguide regions. The arbitrariness in
definition introduces an additional source of flexibility in the network
representation of waveguide structures. For example, if the voltages V.,
and currents I, employed in Eqgs. (3) are transformed into a new set V,
and I, by

v -
Vo= 2,  I,=I.N, 4
VN (1)

ki
n

the transformed network equations retain the same form as Egs. (3) pro-
vided the transformed impedance elements are given by

Zsn = Zpn N NuN,. (4b)

The new representation may possess features of simplicity not contained
in the original representation. Because of this it is frequently desirable
to forsake the more conventional definitions of voltage and current in
order to secure a simplicity of circuit representation. It should be noted
that the new definitions are equivalent to a change in the characteristic
impedances of the terminal waveguides or, alternatively, to an introduction
of ideal transformers at the various terminals.

b. Admittance Representation.—Although the preceding reformulation
of the “far’’ field description of the microwave structure of Fig. 3-1 has
been carried through an impedance basis, an equivalent reformulation
on an admittance basis is possible. In the latter case the original bound-
ary value problem is specified by indication of the transverse components
of the electric rather than the magnetic field on the terminal surfaces
Ty, . .., Tx. The introduction of voltages V., and currents I,, on the
terminal planes together with a Kirchhoff analysis on a node basis (i.e.
V. rather than I,, specified at T,,) leads in this case to network equations
of the form
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I =YulV, + YieVo 4+ -+ - + YLvVN,
I, = Y21V1 + YouVo + - -+ + YzNVN,
Iy =YmV:i+ YN2V2 + o+ YNNVN,

where the admittance elements Y., possess the same general properties
Yma = Y. and in the nondissipative case Re (Y mn) = 0 as the impedance
eletents of Egs. (3). "n this case the admittance element Y ,.. represents
the current set up at the terminal T, by a unit voltage applied only at the
terminal 7, As an alternative to Eqs. (5) the array of admittance
coefficients

Y11 Y12 T YL\'

Yo Yzz T Y?.’V
v = . Ce e . ,

Y YNz c T YNN

called the admittance matrix of the waveguide structure, is sometimes
employed to characterize the dominant-mode behavior of the given
structure.

The statements relative to the arbitrariness in choice of terminal
planes and voltage-current definitions apply equally well to the admit-
tance description. However, the equivalent network representation of
the network equations (5) is dual rather than identical with the network
representation of Egs. (3).

¢. Scattering Representation.—An alternative description of the fields
within the waveguide structure of Fig. 3-1 stems from a reformulation of
the associated field problem as a scattering problem. Accordingly, in
addition to the general requirement of the vanishing of the electric-field
components tangential to the metallic surfaces, the original boundary-
value problem is defined by specification of the amplitudes of the waves
incident on the terminal planes 7y, . . . , T. In thisscattering type of
deséription the dominant-mode fields at any point in the waveguide
regions are described by the amplitudes of the incident and reflected
(scattered) waves at that point. In particular the fields at the terminal
plane T, are described by

E‘(x;yJZM) = (am + bm)em,
Ht(x;yyzm) = (am - bm)hm,

where e,, and h,, are vector mode functions characteristic of the trans-
verse form of the dominant mode in the mth guide and a= and b., are,

hm = Zom X em, (6)
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respectively, the complex amplitudes of the electric field in the incident
and reflected wave components of the dominant mode field at T,.. The
normalization of the mode functions is such that the total inward power
flow at any terminal T’ is given by |a.|? — |bn|?; this corresponds to a
choice of unity for the characteristic impedance of the mth guide.

The fundamental existence theorem applicable to the scattering
formulation of a field problem states that the amplitudes of the scattered
waves at the various terminals are uniquely related to the amplitudes of
the incident waves thereon. As in the previous representations the form
of this relation is readily found by adduction of the linear nature of the
electromagnetic field. Because of linearity the amplitudes of the
reflected waves set up at the terminal planes Ty, . . . , Tx by a single
incident wave a; at Ty, or az at Ty, . . . are

b1 = 811(11, b, = 812112, b = SlNaN,
by = Snal, b, = Szzaz, by = S?NaN,

™

by = Smay, by = Swzaz, bn = Sywvan.

Therefore, by superposition the amplitudes of the scattered waves aris-

ing from the simultaneous incidence of waves of amplitudesa;, . . . , ax
are
by = Suay + Swae + - - -+ SlNGN,
by = Smiay + Sseaz + ¢ ¢ ¢+ Sanax,
(8)
by = Svia1 + Swaa2 + ¢+ - + Syaay

where the proportionality factor, or scattering coefficient, S, is a measure
of the amplitude of the wave scattered into the mth guide by an incident
wave of unit amplitude in the nth guide. In particular, therefore, the
coefficient S, represents the reflection coefficient at the terminal T,
when all other terminals are “matched.” For brevity it is frequently
desirable to characterize the scattering properties of a waveguide structure
by the array of coefficients

S11 S12 ¢ Sy
Sa1 Szz T Szw

Sx1 SN2 T SNN
called the scattering matrix, rather than by Egs. (8).
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The elements S, of the scattering matrix S may be determined either
theoretically or experimentally. The values so obtained are dependent
on the choice of terminal planes and the definitions of incident and
scattered amplitudes. Certain general properties of scattering coeffi-
cients may be deduced from general considerations. For example, with
the above definitions [Egs. (6)] of the amplitudes a, and b,, it can be
shown that

1. The reciprocity relations Smu. = Sum,
N

2. The unitary relations 2 S*5uSsn = Smn = {
s=1

lifm = n,} (10)

0ifm = n,

are valid; the latter apply only to nondissipative structures.

If the given structure possesses geometrical symmetries, it is possible
to derive corresponding symmetry relations among the scattering coeffi-
cients. These relations, derivable without the necessity of solving field
equations or performing measurements, are identical with those for the
elements of the impedance or admittance matrices of the same structure.

The reformulation of field problems either as network problems or as
scattering problems provides fully equivalent and equally rigorous
descriptions of the far field in a microwave structure. The choice of
one or the other type of description is difficult to decide in many cases.
In favor of the impedance or admittance descriptions are the following
facts: (1) The descriptions are in close accord with conventional low-
frequency network descriptions; (2) they can be schematically represented
by equivalent circuits; (3) they lead to simple representations of many
series or shunt combinations of discontinuities and junctions. In favor
of the scattering description are the facts: (1) It is particularly simple and
intuitive when applied to the important case of matched or nearly
matched microwave structures; (2) reference-plane transformations can
be effected quite simply by phase shifts of the scattering coefficients.

For the most part impedance or admittance descriptions are employed
throughout the present volume since it is desired to stress the connection
between microwave network analysis and the conventional low-frequency
network analysis. For interrelations among the various descriptions the
reader is referred to Principles of Microwave Circuits by C. G. Montgomery
and R. Dicke, Vol. 8 of this series.

3-2. Equivalent Circuits for Waveguide Discontinuities.—The Kirch-
hoff analysis of the far fields within a general N-terminal pair microwave
structure can be expressed in terms of N(N + 1)/2 complex parameters
{¢f. Egs. (8) and (5)] and represented by a general N-terminal-pair
equivalent network. If the structure possesses geometrical symmetries,
it is possible to reduce the number of unknown network parameters and
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correspondingly simplify the form of the equivalent network by means of a
Kirchhoff analysis that utilizes these symmetries. Symmetrical struc-
tures are characterized by the existence of two or more terminal planes
looking into any one of which the structure appears electrically identical.
As outlined in the preceding section, a Kirchhoff analysis of the response
due to current excitation at one of these symmetrical terminal planes is
described by impedance coefficients given by one of the columns in Eqgs.
(2). The columns describing the responses due to current excitation at
the other symmetrical terminal planes can be expressed in terms of these
same impedance coeflicients, but in different order. It is thus evident
that the symmetry properties of the given structure can serve to reduce
the number of unknown impedance coefficients. Results of analyses
utilizing structural symmetries will be tabulated in this section for several
microwave discontinuities.

The Kirchhoff analysis of a symmetrical microwave structure can
be effected on either an impedance or an admittance basis. The choice
of analysis is generally dictated (at least for the N > 3 terminal pair
structures) by the type of geometrical symmetry possessed by the struc-
ture. It is not implied hereby that only one type of description is
possible in a given case. An impedance or an admittance description is
always possible. In a structure with a certain type of symmetry the
impedance description, for example, may be found most desirable since
the parameters of the equivalent circuit for the structure may be simply
related to the elements of the impedance matrix but not to those of the
admittance matrix. The possible existence of another equivalent circuit
whose parameters are simply related to the elements of the admittance
rather than of the impedance matrix is not excluded. However, the
two equivalent circuits will not, in general, be equally simple. The
preferred description is that based on the simplest equivalent circuit.

In the following the equivalent circuits together with the correspond-
ing impedance, or admittance, representations of several general classes
of microwave structures will be presented. No detailed effort will be
made either to show how the symmetries of the structure delimit the
form of the matrix and circuit representations or to discuss the reasons
for the choice of a particular representation. The consistency of a
representation with the symmetry of a structure can be readily verified
on application of a Kirchhoff analysis both to the given structure and to
the equivalent circuit. These analyses lead, of course, to the same
matrix representation. Incidentally the recognition of the applicability
of conventional Kirchhoff analyses to microwave structures constitutes
an important engineering asset, for one can thereby set up and delimit
the impedance or admittance matrix or, alternatively, the equivalent
circuit representation thereof and derive much information about the
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behavior of a given microwave structure without the necessity of solving
any field equations.

For a given type of geometrical symmetry the equivalent circuit
information will be seen to apply equally well to a variety of waveguide
structures of which only a few will be pointed out. Since no specific
choice either of terminal planes or of voltage-current definitions will be
made, the representations to be presented are of a quite general form and
can be considerably simplified by a judicious choice of these factors (cf.
Sec. 3-3). However, the positive directions of voltage and current will
be indicated since the form of the impedance or admittance matrix

2oL L 7 /. A4 -l
0 ! )
= (W/%%z:

(a) Symmetrical discontinuity (b) Symmetrical junction of two guides
in a waveguide

Yll YIZ

YlZ Yll

(d) Equivalent circuit
Fic. 3:2.—Symmetrical two-terminal-pair waveguide structures.

(¢) Admittance matrix

(though not the equivalent circuit) depends on this choice. Furthermore
the location of the terminal planes, though arbitrary, must be in accord
with the symmetry of the given structure. It is assumed throughout
that only the dominant mode can be propagated in each of the wave-
guides, this unnecessary restriction being employed only for the sake of
simplicity

a. Two-terminal-pair Networks.—Typical two-terminal-pair wave-
guide structures of arbitrary cross section are illustrated in Fig. 3-2a and b.
For a symmetrical choice of the terminals T'; and T'; relative to the central
plane, the symmetry of the structure imposes a corresponding symmetry
on the admittance matrix and equivalent circuit representation of the
over-all structure. The general representation of a two-terminal-pair
structure is thereby reduced to that shown in Fig. 3-2¢ and d. The
positive directions of voltage and current have been so chosen as to
obtain positive off-diagonal elements in the admittance matrix.
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The simplification in eircuit description resulting from the symmetry
of the above two-terminal-pair structures can be taken into account
equally well on an impedance basis. In this case the cireuit represen-
tation is expressed in terms of a symmetrical 7-circuit rather than of the
x-circuit employed in the admittance description.

b. Three-terminal-pair Networks.—An arbitrary junction of three
waveguides may be represented by either the impedance or the admit-
tance matrix shown in Fig. 3:3a orb. The equivalent circuits correspond-

Zy  Zn Z1a i Y, Y,
Zy 2y 23 Y2 Yar Y
Ziy Iy Z3 (8 Yy €T
(@) Impedance matrix of a general () Admittance matrix of a general
6-terminal network 6-terminal network

I,
———0
(Yo =¥, 0~ l
(Ya=Y3) V,
O
il (b) Equivalent network for a (d) Equivalent network for a
general 6-terminal structure general 64erminal structure

F16. 3-3.—Representations of general three-terminal-pair structure.

ing to these matrices are dual to one another and can be represented as
indicated in Fig. 3-3c and d. These representations can be considerably
simplified for the case of symmetrical structures.

An important class of symmetrical three-terminal-pair structures is
that in which geometrical symmetry exists with respect to a plane. Such
symmetry implies that the symmetry plane bisects one of the guides, the
so-called stub guide, and is centrally disposed relative to the remaining
two guides, the latter being designated as main guides. Structures with
this planar symmetry may possess either E- or H-plane symmetry,
depending on the type and relative orientation of the propagating modes
in the main and stub guides. E-plane symmetry obtains when sym-
metrical electric-field excitation in the main guides results in no coupling
to the stub guide. On the other hand, H-plane symmetry implies that
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antisymmetrical electric-field excitation in the main guides produces no
excitation of the stub guide. It should be noted that such properties are
not present if modes other than the dominant can be propagated in the
stub guide.

STRUCTURES WITH E-PLANE SYMMETRY.—Two junctions with E-plane
symmetry are illustrated and represented in Fig. 3-4. When formed of
guides with rectangular cross section, such junctions are characterized

‘
— A\
¢ <

(@) Symmetrical E- piane T-junction (b) Symmetrical E-plane Y-junction

—"h

1
/‘ 3 ;
YH YIZ y’lJ Yl3 )
Y, Y, Y, Iy ;
12 1 13 O
Y, Y Y3 1 Yn-Yo
Y
(c) Admittance matrix n

(d) Equivalent circuit
Fia. 3-4.—Symmetrical three-terminal-pair structures—E-plane symmetry.

by the fact that the far electric field is everywhere parallel to the plane
of the above figures. The indicated admittance matrix and equivalent
circuit representations of such structures depend on a symmetrical
choice of terminal planes in guides (1) and (2).

For the special case of a Y junction with & = 120°, it follows from the
added symmetry that Y1, = Y3 and Y, = Y33, provided the terminal
plane in guide (3) is selected in the same symmetrical manner as those in
guides (1) and (2). The equivalent circuit of Fig. 3-4d therefore reduces
to that shown in Fig. 3-5q.

For the case of a ¥ junction with ® = 0, the so called E-plane bifurca-
tion, the sum of the terminal voltages is zero and consequently Y =
(4,7 = 1, 2, or 3) if the terminal planes are all chosen at the vlane of the
bifurcation. Although the admittance matrix is singular in this case,
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differences of the matrix elements are finite and the equivalent circuit of
Fig. 3-4d reduces to that shown in Fig. 3-5b. For a bifurcation with a

T v, oT
—

Yiu-Y.| h)-hn,

To~¢ Vn o <_VZ bT

(@) ®)
Fic. 3:5—(a) Equivalent circuit for 120° Y-junction. (b) Eguivalent circuit for 0°
Y-junction.

dividing wall of arbitrary thickness
Y = le -+ Ysa - 2Y13,
and for a wall of zero thickness

Yiu — Vi

Y = - 22

STRUCTURES WITH H-PLANE SYMMETRY.—The sectional views of the
junctions illustrated in Fig. 3-4a and b apply as well to junctions with
H-plane symmetry. In the latter case, for guides of rectangular cross
section, the far magnetic field is everywhere parallel to the plane of the
figures. Coaxial T and Y junctions, though not possessing the same
geometrical structure, have the same type of field symmetry; junctions
of this type are illustrated in Fig. 3:6a and b. The associated imped-
ance matrix and equivalent circuit representations shown in Fig. 3-6
correspond to a symmetrical choice of terminal planes in guides (1)
and (2).

If & = 120° in the H-plane Y junctions of Fig. 3-4b, the higher degree
of symmetry implies that Z,, = Zy; and Z1; = Z3;, provided the terminal
plane in guide (3) is chosen symmetrically with those in guides (1) and (2).
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In this case the equivalent network of Fig. 3-6d becomes completely
symmetrical and is composed of a common shunt arm of impedance Zs
and identical series arms of impedance Z;, — Zys.

(3) (3)

s oo dondd v e ravd A A WA .

1) @) (1) (2)
btk & £ A k. VA

Ll ook dondn DAY Ay A v a4 otnndl VAL .

(a) Probe coupled junction of coaxial
and arbitrary waveguides

. T T
(¢) Impedance matrix ! (d) Equivalent circuit :

Fi16. 3-6.—Symmetrical three-terminal-pair structures—XH-plane symmetry.

¢. Four-terminal-pair Networks. JUNCTIONS WITH E-PLANE SYM-
METRY.—Junctions of four rectangular guides with E-plane symmetry are
indicated in Fig. 3-7a and b. Since there exist two symmetry planes,
either guides (1) and (2) or guides (3) and (4) can be designated as the
main guides or as the stub guides. The designation E-plane is consistent
with the fact that the far electric-field intensity is everywhere parallel
to the sectional plane indicated in the figure. If guides (1), (2) and
guides (3), (4) are identical and the terminal planes in identical guides are
chosen symmetrically, the admittance matrix and equivalent circuit
representations of the structure are shown in Fig. 3-7¢ and d.

The indicated equivalent circuit applies to the junction in Fig. 3-7b
only if the thickness of the dividing wall is sufficiently large to make
negligible the E-mode coupling (i.e., the coupling resulting when the
normal electric field is a maximum at the aperture). If this situation
does not prevail, as is the case when the thickness of the dividing wall is
small, the 4+45° diagonal elements of the admittance matrix of Fig. 3-7¢
should be changed from Y13 to Y14 in order to take account of both E-
and H-modes of coupling through the aperture. For the case of four
identical guides, a dividing wall of zero thickness, and all terminal planes
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Fre. 3-7.—Symmetrical four-terminal-pair structures— H-plane symmetry.
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F1g. 3:8.—Equivalent circuit for junction of Fig. 3:7b with wall of zero thickness.

~0

chosen coincident at the central reference plane T, the elements of the
admittance matrix become infinite but differ from one another by a finite
amount. The equivalent circuit corresponding to the resulting singular
matrix is illustrated in Fig. 3-8 where

Y, = 2(Y11 - le) = 2(Y13 - Y14) = Z(Yaa - Y:H);
Y, 2(Y12 - Yla) = 2(Y34 — Yia).
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JUNCTIONS WITH H-PLANE SYMMETRY.—The sectional views of Fig.
3:7a and b apply equally well to junctions with H-plane symmetry; in
such junctions the far magnetic field intensity is everywhere parallel
(i.e., the far electric field is everywhere perpendicular) to the plane of the
indicated sectional view. The coaxial guide junctions shown in Fig.
3-9a and b also possess the same field symmetry as the H-plane junctions.

'(4)E 4)
) | a
‘
3 z
Crrrrrre zzz] Crrrrrrrs
§ (1 2
T m J @ S — -
E Em E:!mzzi ,,,,, =
1 ‘
H R
Ej B E A e
(a) Coaxial to waveguide junction (b) Cross junction of two coaxial guides

2y Z1 Ziy Zy
Zu Zu Zy3 Zn
Zyy Zna Zy Zy

Zy3 21y Zu Z3:

(d) Equivalent circuit

(¢) \mpedance matrix
F1G. 3-9.—Symmetrical four-terminal-pair structures—H-plane symmetry.

If the terminal planes T, and T, are chosen symmetrically (as likewise
T3 and T,), the equivalent circuit and impedance matrix representations
of this class of structures are shown in Fig. 3-9¢ and d.

If the dividing wall in the H-plane junction of Fig. 3-7b is of small
thickness, the +45° diagonal elements of the impedance matrix are to be
changed from Zq; to Z1;. The corresponding equivalent circuit is shown
in Fig. 3:10a. The special case of identical guides, a dividing wall of zero
thickness, and all terminal planes coinciding at the central reference plane
T is represented by the equivalent circuit of Fig. 3-10b.

MAGIC T-JUNcTIONS.—T'wo typical magic T-junctions are depicted in
Fig. 3:11a and b. In Fig. 3-11a a symmetrical junction of four rectangu-
lar guides is illustrated in which guide (3) is the H-plane stub and guide
(4) is the E-plane stub. Figure 3-11b is a symmetrical junction of one
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Zy Zq T
_Za
2
Tz z T
20=(211-2)2) -~ (214~ 213) Z2a=2Zn -2} =223~ 21)=2(Z33~Z24)
Ze=(Z33-234) = (Z14=213) Zy=2212~213)=2(Z3u~2y3)
(@) Wall of arbitrary thickness (b) wall of zero thicknegs

Fig. 3-10. Equivalent circuits for junction of Fig. 3-7b—H-plane symmetry.
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~_ Top view ) Side view
(a) Magic T-junction of four rectangular guides () Magic T-junction of one coaxial and three rectangular guides

2y =2y 0 m

\_ o

(c) Impedance matrix (d) Equivalent circuit
Fi1g. 3:11.—Magic 7T structures.

2u=212-2u t
|4

O

coaxial and three rectangular guides; in this figure the coaxial guide (3)
is the H-plane stub. If the terminal planes in the identical guides (1)
and (2) are chosen symmetrically, the impedance matrix and equivalent
circuit representations of these junctions are given in Figs. 3-11¢ and d.

3.3. Equivalent Representations of Microwave Networks.—Many of
the equivalent circuits indicated in the preceding sections may be unsuit-
able in practice either because of difficulties in carrying out network
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computations or because of the complexity in the measurement and
frequency dependence of the circuit parameters. By an appropriate
choice both of voltage-current definitions and of reference planes, alterna-
tive circuits can be devised in which such difficulties are minimized.
Several equivalent representations obtained in this manner will be
described in the present section. Since symmetrical N-terminal-pair
representations can often be reduced by symmetry analyses (bisection

S e N el

(1) (2)

|
|
|
L

Tlo Tl, Tl 1/-/ Tz TZ[

F1a. 3-12.—General two-terminal-pair waveguide discontinuity.

N — e —

theorems) to a number of two-terminal-pair networks or less, equivalent
representations of the basic two-terminal-pair structures will be con-
sidered first.

The arbitrary discontinuity at a junction of two different guides
illustrated in Fig. 3-12 is an example of a general two-terminal-pair
microwave structure. The over-all structure may be represented by
transmission lines of characteristic impedances Z, = 1/Y,and Z, = 1/7Y,,
connected at the terminal planes 7'y and T'; by either the T or = equivalent

Zy~2y, Zp~2Zy, Y.
o—N\VVv NN—0 o AN/ o
Z, Z; Y Y
Zy Y~ Yo Y22 -1,
N1 Ag2 g1 Ag2
O O O -0
n T equivalent T, I 7 equivalent T

Fig. 3-13a.—Circuit representations of a general two-terminal-pair structure.

circuit indicated in Fig. 3-13a. The relations among the circuit param-
eters of the T and = representations at the terminals 7; and T, are

Zy — Zy, = %2: Yu—Yy, = Z2_2};_|Z”;
Y z
Zon —Zw= %21 Yo — Y = Zu IEI Zm)
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where
1 1
lY] = Y11Y22 —_ Y%z = ml IZI = Z]]Zzz - Z%z = |——l

The relation between the input impedance Zi. (or input admittance Yi)
at T; and the output impedance Zn. (or output admittance You) at 7',
is given by
_ AR Y, )
e G T O
At the same terminals 7'; and T, alternative representations of the
above discontinuity are provided by the series-shunt circuits of Fig. 3-13b.

¥4 |/Z 1 1
. ®) O

5 Z; Y Y,

Zy QB L= 08 =9 U4

* n

A1 gz Agy Ag2
T T, T, T,
1 e Zn 2 1 e Yie 2
22 Y1
Shunt-series Series-shunt

Fia. 3-13b.——Circuit representations of a general two-terminal-pair structure.

These dual circuits are equivalent to the T and =-circuits shown in Fig.
3-13a. The primary-secondary turns ratio of the ideal transformer is
denoted by n/1; the corresponding impedance ratio at the transformer
terminals is n2/1. It is evident that for a structure in which the determi-
nant |Z| or |Y| vanishes, the equivalent circuit becomes either purely
shunt or purely series, respectively. L q

In this special case the ideal trans- ! 4 !

former can be omitted if the char- 2,
acteristic impedance of the output

line is changed to n2Z,; i.e., if the
voltage-current definitions in the
output guide are changed. A Ao

=1 V4
Zo‘Y,, !

Ag
A variety of other equivalent ? 2
) 2

representations for two-terminal- F1g. 3-14.—Transmission-line representa-
pair structures can be found by tion of a symmetrical two-terminal-pair
employing transmission lines as structure.

circuit elements. Thus, as shown in Fig. 3-14, a transmission line of length
6 = «l and characteristic impedance Z, can be employed to represent a
symmetric discontinuity structure with Z;; = Z3(Y1; = Vi), In terms
of the parameters of the circuit representations of Fig. 3-13a and b, the
transmission-line parameters are
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Zo = NVZY ~ ZY, Yo = VYi — Y3,
0 Ziw — Zn 0 \/712 — Yu
tan o = 4 |22 2u L L3
M= NZu ¥ Z 2T AYLF YL

The consideration of the corresponding representations for asymmetrical
structures will be deferred until the closely related question of the trans-
formation of reference planes is treated.

Transformations of Reference Planes,—Equivalent circuit representa~
tions of a waveguide discontinuity may be considerably simpler at one set
of terminal planes than at another. The investigation of simplifications
of this type requires the ability to determine the equivalent circuit param-
eters at one set of reference planes from the knowledge of the parameters
at any other set. For the case of the structure shown in Fig. 3-12,
shifts of the input terminals from 7'y to T, a distance d away from the
junction, and of the output terminals from T'; to T, a distance s away
from the junction, can be accomplished in several ways. A straight-
forward way of effecting this shift involves the addition of transmission
lines (or their equivalent circuits) of lengths d and s to the input and out-
put terminals, respectively; the characteristic impedance and propagation
wave number of the input and output lines being Z; = 1/Y 4, k1 = 2r/A;y,
and Z, = 1/Y,, k2 = 2r/A;s. The computation of the “shifted’” param-
eters can be carried out by standard circuit techniques. Though some-
what laborious, this method has the virtue of being applicable to
N-terminal-pair structures involving both uniform and nonuniform
transmission lines. Phase shift of the scattering matrix of a microwave
structure provides an alternative method of reference-plane transfor-
mations, but this will not be discussed herein.

For the particular case of uniform lines there is another way of effect-
ing the desired transformation. This method is based on the fact that an
arbitrary two-terminal-pair network can be represented as an ideal
transformer at certain ‘‘ characteristic’” reference planes. Since reference
plane transformations to and from these ‘‘characteristic’’ terminals can
be readily accomplished, a simple means of carrying out arbitrary
transformations is thereby provided.

The existence of an ideal transformer representation of the two-
terminal-pair structure of Fig. 3-12 follows from the fact that at the
terminals 7; and 7T, the input-output relations of Eqgs. (12) can be
rewritten in terms of three new parameters Dy, Sy, v as

tan Ki(D — Dy) = v tan k(S — So) (13)
if the change of variables

Zin = _]Zl tan K1D, Yin
Zout = +]Zz tan KZS, Ym"

+3Y1 cot «,D,

—]Y2 cot Kzls (14)
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is made. The relations between the parameters Do, So, v of the tangent
relation (13) and the parameters of the T or = representation of Fig. 3-13
are given either as

_ _af+«
a = ﬂ—_—a‘y,
C=1ﬂt_a£:) (15)
b=a_67,
B — oy

or conversely as
_ 14— a— b \/1+62—a2—b22
*=SBw—by = [ 2(a — be) +1

ﬁ=1+a2—c2—b2¢\/[1+a2—02—b2:|2+1, (16)

2(c — ba) 2(c — ba)
B _1+a2+c2+b2+\/1+a2+c2+b22_1
= 2(b + ac) 2(b + ac) ’
where for the
T Representation m Representation
2r 2r
a—tan)\—v—lDo a——cotmDo
2r 2r
6——tanrﬂso Bﬂ_cot)\—"zSQ
__Zn _ _.Yu
a= A a= —J 7, a7
ol R
b= ZuZs — le b YiuY, — Ym
lez YIYZ

The relations (15) are determined by expansion and identification of terms
in Egs. (12) and (13); Egs. (16) follow from Egs. (15) by inversion.
Equations (15) are not valid for the degenerate case « = g = 0, as is
to be expected from the corresponding degeneracy in the impedance
representation of an ideal transformer. The + signs in Eqgs. (16)
indicate the existence of two sets of , 8, v equivalent to a, b, ¢; these sets
are positive or negative reciprocals of each other. For each value of
vy given by Egs. (16), the corresponding set of values for a and 8 may be
obtained from

_b+r B=V(b+a0)+(1+a2)
c+ ay ¢ —ab !
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or
_ _a+tey ﬂ:_y(lﬂ—}—c?)—i-(b—}—ac)'
CT Ty ~(c — ab)
For each value of «, the corresponding set of values of 8 and v are
b —oac b= ac
B_a—i—a’ ‘Yﬂaa+l’
or
g = 1 — aa _ _a+ a
Tt ab’ v ¢+ ab

For nondissipative structures with purely reactive output impedances
it is evident from Kgs. (14) that both D and S are real. The quantity D
is then the distance from the terminal 7' to a voltage node in the input
line and is counted positive in the direction away from the junctions;

o— I -0
Zl ZZ
n 1
Agi Ag2

O
' T

Ideal transformer
T16. 3-15. - Ideal transformer representation of a nondissipative two-terminal-pair structure
at characteristic reference planes.

correspondingly, S is the distance from 7T’; to a voltage node in the output
line and is also positive in the direction away from the junction. Thusif y
is written as —nZ./Z;, Kq. (13) states that “characteristic’”” terminals
T3 and 779 exist, distant Do and Sy away from 7'y and 7', at which the
input impedance is a constant n® times the output impedance.! There-
fore at the terminals 70 and 7§ the equivalent circuit of the nondissipative
waveguide junction shown in Fig. 3-12 is the ideal transformer depicted
in Fig. 3-15.

The equivalence between the transformer representation at T3, T2
and the T or = representation at T, T, can be rephrased as an equivalence
at the same set of terminals. For example, if lengths Do and S, of input
and output transmission lines are added, respectively, to the terminals
Ty and T, of the T or = representation of Figs. 3-13, a representation is
obtained at 7’9 and T} that is equivalent to the transformer representation
of Fig. 3-15. Conversely, if lengths —Dg and —.8, of input and output
lines are added to the terminals T, T3 of the transformer representation,

Y Cf. A. Weissfloch, Hochfreq. u. Elekiro., vol. 60, 1942, pp. 67 el seq.
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a representation is obtained at T, T, that is equivalent to the T or =
representation.

The transformer representation embodied in Eq. (13) provides a
relatively simple means of determining the parameters a’, b’, and ¢’
[¢f. Egs. (17)] of a network representation at any terminals 77, 75 from
the corresponding parameters a, b, and ¢ of a representation at the ter-
minals 71, To. Let it be assumed, as indicated in Fig. 3-12, that the refer-
ence planes T and T} are located at distances d and s, respectively, away
from T; and T2 The form of the tangent relation relative to the new
reference planes 7, and T can be readily obtained from that at the
reference planes T, and T, by rewriting Eq. (13) as

tan K1[(D — d) — (Dy — d)] = v tan «[(S — s) — (S — s)]. (18)

Comparison of Egs. (13) and (18) indicates that relative to the new
terminals 7f and T'; the parameters o', 8, and v/, as defined in Eqgs. (17),
are given by

r _ — a — ao’

o = tan x;(Dy — d) 1T aa
- 1
ﬁ/ = tan Kg(So - 8) = %} ( 9)
v =1,
where
aQy = tan K1d = tan 2—7r d,
g1

2w (20)

Bo = tan k.8 = tan — s.

)\gg

At the new terminals 7'{, 7 the relations between o, &', ¢’ and &', §’, v’
are the same (except for the prime) as those between a, b, ¢ and «a, 8, v
given in Eqs. (15). The elimination of ¢/, 8/, v’ from the primed relations
by means of Eqgs. (19), followed by the use of Eqgs. (15), leads to the
desired relations [Egs. (21)] between the shifted and original network’
parameters.

o— ——o o

Zy Z, Z A Z, Zy
al b ¢ a, b

Ay Ag2 g1 Ay Ag2 Ag2

Qe ) Or— — ]

I T, T I"d -'l F—s —-l T,
@ ®
Fia. 3-16.—Equivalent representations of shifted two-terminal-pair network.
On transformation to new terminals 7] and T4, located at distances
d and s from 7', and 7’5, the two-terminal-pair networks indicated in Figs.
3:13a and b can be schematically represented as in either Fig. 3-16a or
b, The boxes represent networks of the 7 or = type or any of their
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equivalents; the heavy lines represent lengths of transmission lines.

The relations between the parameters a, b, ¢ of the original 7(x) repre-

sentation and the parameters a’, V', ¢’ of the transformed 7'(r) representa-
tion are!

o =2 + a0+ Bob — aoBoC,

1— o — ,300 - aoﬂob

o = ¢+ ah + By — Cloﬁtﬂ}

1 — aoa — Boc — aofod

b o= b — ac — Boa — Oloﬂo’

1 - Qo — ,300 - aof)’ob

(21)

where
_ 2r _ 2r
ae—tanr“d, Bo—tan)\—ﬂs.
Equations (21) apply as well to the case where a’, &', ¢’ are parameters of
a T'(r) representation and a, b, ¢ are parameters of a 7(T') representation,
provided the relation between a,, 8o and d, s is
2 2
a°=_COtr,,1d’ ﬂo=—00tr:rzs-
It is to be noted that the two distinct sets of transformation relations
distinguished by the parentheses in the preceding sentences are dual to
each other.
As an illustration of the use of Egs. (21) let it be required to determine
the shifts d and s of the input and output terminals of the waveguide
structure of Fig. 3-12 in order to transform the representations of Fig.

JjB
o o o—AA o
Z 22 n Y,
X n ! n 1
A1 Ago Ay Ag2
o 0 o
Ti T; T T

(a) (&)
Fic. 3-17.—Equivalent representations by shift of terminal planes. (a) Shunt repre-
sentation of arbitrary two-terminal-pair network shown in Figs. 3-13a and b. (b) Series
representation of arbitrary two-terminal-pair network shown in Figs. 3-13a and b.

3:13a and b into the pure shunt (series)! representation of Fig. 3:17¢ and b.
Let a, b, ¢ be the parameters, as defined in Egs. (17), of the original
representation, and correspondingly let a’, ¥, ¢’ be the impedance (admit-
tance) parameters of the transformed representation. Since for a shunt

1 The following statements apply to the cases either within or without parentheses,
respectively.
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(series) representation b = 0, it follows from KEgs. (21) that for an
arbitrary ao

_ b — aoC
ﬁo = a + oo ’ (220)
where
ap = tan 2 d, Bo = tan 2n 8 (22b)
)‘ul )\02
for a T(x) to shunt (series) representation, or
ap = — cot 2r d, Bo = — cot 2 s (22v")
>‘01 )‘02

for a T'(r) to series (shunt) representation. On substitution of Eq. (22a)
into (21) the parameters of the shunt (series) representation become

r_ (@ + ag)?2 + (b — ape)?
(1 —a2) (@ — be) + a(l + ¢ —a®> = b?)
ad (a4 a)?+ (b — ae)?

¢ A+ ad) G+ ac)

where for the

a
(22¢)

Shunt Representation Series Representation
a = X a = B
Z, Y,
ANy 7 ¢ _17,
¢ Z c n?Y,

Both the shunt impedance jX and series admittance jB of the transformed
representation are shown in Fig. 3:-17a and b (also ¢f. Fig. 3-13b). A
further simplification of the transformed representation is obtained on
removal of the ideal transformer by modification of the output character-
istic admittance, a procedure indicated previously.

A useful special case of the above transformation occurs when the
original network is symmetrical (¢ = ¢) and the input and output
terminals are shifted by equal amounts d = s. The shift d = s required
to secure a shunt (series) representation is given by Eq. (22a) as

ag=fo=—a+ Vb+a
Therefore, Eqgs. (22¢) become

a = ﬁ’
y (29)
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These expressions assume greater significance when one notes that
A/b + a? represents the shunt reactance (series susceptance) of the
original symmetrical T (v) network.

Another simple case obtains when d = 0. From Egs. (22) it is
evident that for a T'(r) to shunt (series) transformation

2 b
ﬂo—tanrﬁs—&
2 bZ
a'=%; (24)
ad _a+ b
¢ b+ oac

whereas for a T(r) to series (shunt) transformation

27
Bo = —cot)\—ﬂzs— —e,
, 14¢?
a=bc_a, (25)
@ _lte
¢ b+oac

N-terminal-pair Structures.—Equivalent representations of an N-
terminal-pair waveguide structure can be obtained either at a given set of
reference planes or at shifted reference planes. In the former case repre-
sentations of the type depicted in Figs. 3-13a and b can be employed to
secure equivalent representations of the two-terminal-pair networks that
compose the over-all N-terminal-pair network. In addition multiwind-
ing ideal transformers can be usefully employed. Since no impedance or
admittance description of an ideal transformer exists, its description
must necessarily be phrased in terms of terminal voltage and currents.
For the case of a three-winding ideal transformer, illustrated in Fig. 3-18q,
the network equations are

Vlll + V2I2 + V3[3 = Oy
Vi_ Vo _ Vs (26)

where ny, 15, and n; are proportional to the number of turns on the various
windings. The relation between the input admittance Y at the ter-
minals 7’3 and the output admittances Y1 and Y5 at the terminals T'; and
T, follows from Eqs. (26) as

2 2
Vi = <—:LL—;> Y, + (%3) Y,. 27
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The three-winding ideal transformer is evidently a natural generalization
of the familiar two-winding ideal transformer.

A network utilizing the ideal transformer of Fig. 3-18a is shown in
Fig. 3-185. The terminals T, can be regarded as terminals of an output
line or of a lumped-constant circuit elemen*. Accordingly Fig. 3-18b

T I T, I
13 o k4 I3
[ "
4
n
M3 T . : T
I |4 | I 4
TV (e T T 7: n
4 %
& T,
o——-=¢
T T I

(@) ®
Fig. 3-18.—(a) Three-winding ideal transformer. (b) Network with three-winding ideal
transformer.

represents either a four- or a three-terminal-pair network. The corre-
sponding network equations follow from Egs. (26) as

Vi—= Vol + (Vo + V)l + Vils = 0,
Vl—V4_V2+V4_E
Ny B 2] _ns’

I4 = Iz —11.

(28)

The relation between the input admittance Y, at terminals 73 and out-
put admittances Y1, Y, and Y, at terminals T, T, and T4 is given by

- (ny + n2)?Y,Y, + V.Y, + ”l%YZYA_
Y1+ Y.+ 7Y,

Y'm (29(1)

The input admittance Y at T4 in terms of output admittances Y1, Y,
and Yzat Ty, Ty, and Tsis

_ (n1 + n2)2Y1Y2 + n§(Y1 + Yz) Y3_

Ya nY, - niY, + niv,

(29b)

The input admittance Y at T, in terms of output admittances Yy, Vs,
and Y,at Ty, Ts, and Ty is

Y' _ n‘iY1Y4 + ’n%(Yl + Y4)Y3

Ty + ne)?Y; + niY; + n§Y4- (29¢)
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The special case n; = n, describes a hybrid coil, a network frequently
employed to represent a magic T (¢f. Fig. 3-11) at appropriate reference
planes. For this case it is apparent from Eqs. (29a) and (b) that when
Y, = Y, the input admittance at T'5(7T) is independent of the output
admittance at 74(7;). This important property forms the basis for
many applications of the magic T in bridge circuits, etc. By the use of
additional elements in the network of Fig. 3-18) it is possible to obtain

T Y, ?

b4
Yo
n
(c)
O 1
1
O 0 '
Y, n Y,
iB o S—
-
o— VWA ) i
7 ) T ) @

Fia. 3:19.—Steps in reference-plane transiormation of representation in (a) to represen-
tation in (f).

equivalent representation of arbitrary three- or more terminal-pair
networks.

Equivalent representations of an N-terminal-pair structure can
also be obtained by transformation of reference planes. Reference
plane shifts can be effected quite simply if the over-all network repre-
sentation can be reduced to a number of two- (or less) terminal-pair
networks. Such reductions, for the case of symmetrical N-terminal-
pair networks, can be accomplished by the use of symmetry analyses
(bisection theorems). The reduced networks are fully equivalent to
the over-all network in that the former compose the latter and conversely
the latter reduce to the former. If the reduced networks are two-ter-
minal-pair networks, the transformation equations (21) can be employed
to secure new representations at other terminal planes. With the knowl-
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edge of the new representations of the reduced networks the over-all
network can be composed at the new reference planes.

For illustration a transformation process will be employed to obtain
simplified representations of the three-terminal-pair structures depicted in
Figs. 3-4 and 3-6. The over-all network representations at the terminals
T\, Ts, and T are reproduced in Figs. 3-19a and 2-20a¢ with a somewhat
different notation. On bisection of the over-all networks by placement

Zg
Z,
o
Tl
(1)}
2Z,
1
P S— T,
z :'X%/ z Zy 2x
o —_0 o o
T T T, T
(62 le) )

F1a. 3-20.—Steps in reference-plane transformation of representation in (@) to represen-
tation in (f).

of a short or open circuit at the electrical centers, the reduced networks
indicated in Fig. 3:19b or ¢ and Fig. 3-20b or ¢ are obtained. Simplified
representations of these reduced networks can easily be found. On
appropriate shift of the terminal 7'; a distance d away from the junction,
the reduced network of Fig. 3-19¢ becomes the open circuit indicated in
Fig. 3-19d; and correspondingly, the network of Fig. 3-20b becomes the
short circuit of Fig. 3-20e. In addition the terminal T'; can be shifted a
distance s away from the junction so as to transform the reduced networks
of Figs. 3-19b and 3-20c¢ into the series and shunt representations of Figs.
3-19¢ and 3-20d. The over-all network representation at the new ter-
minals 75, T, and T}, as shown in Figs. 3-19f and 3-20f, is then composed
by recombination of the transformed reduced networks. The relations
between the parameters a, b, and ¢ of the original and &', b’, and ¢’ of the
transformed networks are given by Eqgs. (22a) and (¢), where in this case
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For Fig. 3-19 For Fig. 3-20
- ) & B 2,  jZ.
ap = tdn)\—Ul d = Y, ap = tan WA
ﬁo=tanf—l:s 60=tan>\2—;s
Y. + 2V, 4 2Y. Lo+ 27, + 27,
a = —3 fY— a= —) _’_Z - °
1 1
L2V +2Y, 27,427,
T T ey ©= Tz, (30)
4Y? _ 47?2
b= ey, b=~ =57
a’ = gg /= g
- Yl e = Zl
a _ 12V, o _ 222
¢ nY, ¢’ Zy

As mentioned above the representations in Figs. 3:19f and 3-20f can be
further simplified through removal of the ideal transformer by a suitable
modification of the characteristic impedance of the output line at ter-
minal T45.

3-4. Measurement of Network Parameters.—The experimental
determination of the N(N -+ 1)/2-network parameters that characterize
an N-terminal-pair waveguide structure involves the placement of known
impedances at N — 1 “output’ terminals and measurement of the result-
ing impedance at the remaining “input” terminal. A variable length of
short-circuited line provides a convenient form of output impedance. A
standing-wave detector or its equivalent provides a means for the meas-
urement of input impedance (¢f. Vol. 11 of this series). Input imped-
ance measurements must be performed for N(N + 1)/2 arbitrary but
independent, sets of output terminations. The determinations of the
network parameters from these measurements can be considerably simpli-
fied by a judicious choice and placement of the output impedances. For
example, the placement of arbitrary but fixed output impedances at
N — 2 terminals reduces the over-all network to a two-terminal-pair
network, the parameters of which can be readily measured. A proper
choice of the fixed output impedances gives rise to two-terminal-pair net-
works from whose measured parameters the unknown N(N + 1)/2 param-
eters are easily determined. The proper choice of output impedances is
generally apparent from the form of the equivalent circuit for the over-
all structure. Since the measurement of the parameters of an N-ter-
minal-pair network can be reduced to the measurement of the parameters
of two-terminal-pair networks, only the latter will be considered in this
section.
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The three network parameters characteristic of an arbitrary two-
terminal-pair waveguide structure can be measured by various methods.
The conventional network method involves the measurement of input
impedance for three particular values of output impedance. This method
has the advantage of being applicable to dissipative structures and to both
uniform and nonuniform lines. For nondissipative structures it is desir-
able to employ pure reactive output impedances (short-circuited lines),
since they give rise to an infinite standing-wave ratio in the input line.
Under these conditions the output impedance is a simple function of the
length of the short-circuited line, and the input impedance is a correspond-
ingly simple function of the distance to the minimum in the input line. It
is convenient to employ any three of the following pairs of measured values
for input impedance Zi. and corresponding output impedance Zout,

Zin Zo
Zoar | O

(31)

&
w
8
[=]

w | Z | Zo| Zo

for the determination of the unknown network parameters. The quan-
tity 2o represents the input impedance set up by a zero output impedance,
etc. In terms of the above values the impedance elements for a T repre-
sentation (cf. Fig. 3:13a) of a two-terminal-pair network can be expressed
as in any of the following columns:

\ 1,2, 3 1,2, 4 1,25
_ : |
T |4 B DEe — 202 NGz o+ LG = 2
(z — 2o) l 2
Zy, 2w 2w Za
VA 2,Z
Z a2 i _Zuu - :
2, — Zo Zo

where the numbers at the head of each column indicate the particular set
of three measured values in (31) on which the equations are based. The
admittance elements of a = representation (¢f. Fig. 3-13a) follow from the
above expressions on the duality replacement of impedances by admit-
tances. It is to be noted that either of two elements, + or —Z12(Y12),
can be employed for the representation of the input-output impedance
measurements. This ambiguity can be resolved by a measurement of
transfer impedance or of any other quantity that yields the relative phase
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at the input and output terminals. In many cases the correct sign may
be ascertained theoretically.

For the case of uniform lines the transformer representation discussed
in Sec. 3-3 provides a basis for an alternative method of measurement of
a two-terminal-pair structure. As illustrated in Figs. 3-12 and 3-15 a
nondissipative two-terminal-pair structure can be represented at charac-
teristic terminals T¢ and T3 by an ideal transformer of impedance ratio n*
connecting input and output lines of characteristic impedances Z; and Z,.
The transformer ratio n? and the location of the characteristic terminals
are readily determined from the following typical measurements of

1. The standing-wave ratio and position of the minimum in the input
line for a matched load (Z... = Z,) in the output line.

2. The position of a short circuit in the output line such that the
corresponding minimum in the input line coincides with that in
measurement 1.

From the transformation properties of the ideal transformer it is evident
that the standing-wave ratio in measurement 1 is equal t> n%Z,/Z, which,
as shown in Sec. 3-3, is denoted by —+; the locations of the terminals T
and T¢ are given by the position of the maximum in measurement 1 and
of the short eircuit in measurement 2. Asin Fig. 312, the distances from
the input and output terminals to 7% and T are designated as D, and
Sy, respectively. The parameters of a T or w representation (¢f. Fig. 3-13a)
are then expressed in terms of Dy, So, ¥ by means of Eqgs. (15) and (17).

The accuracy of the two preceding methods of measurement is diffi-
cult to ascertain because of the uncertainty in individual standing-wave
measurements. This difficulty can be partially removed by averaging
a large number of such measurements. For the case of nondissipative
two-terminal-pair structures in uniform lines, a more systematic procedure
may be employed if more accuracy is required. This precision method
involves a plot of the measured values of the positions of the input minima
vs. the corresponding positions of the output short circuits. An analysis
of this plot with the aid of the previously considered tangent relation in
the form

tan 2r(D’ — D}) = 7 tan 2r(S' — S%) (32)

yields the data required for the determination of the network parameters.
Equation (32) is just Eq. (13) rewritten with D’ = D/N\;1, Dy = Do/Agy,
S = S/)\gz, and S(’] = So/)\gz.

As mentioned in Sec. 33, the tangent relation provides a representa-
tion of the input-output impedance relation that is particularly well
suited for measurements in nondissipative waveguides. This is evident
from Eqs. (14), which indicate that S is identically the distance measured
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from the output terminals to a short circuit in the output line and D is
the distance from the input terminals to the corresponding minimum
position in the input line. The essence of the present method is the
determination of a set of parameters Dy, Sy, and v that, on insertion into
Eq. (32), provide a curve of D vs. 8 which best reproduces the experi-
mental curve of D vs. S. By Egs. (15) and (17) it is apparent that the
parameters Dy, S, and v are equivalent to the network parameters of a
T or 7 representation. A virtue of the present method is that a compari-
son of the computed and measured curves of D vs. S indicates immedi-
ately the average accuracy of the final set of parameters Do, So, and 7.

N L

Sp
(a) ()] (c)

Fia. 3-21.—Plots of D vs. S.
(@ —y=1l. B —rv>1l (© —r>1L

In practice it has been possible to obtain, at wavelengths of about 3 c¢m,
an average difference of less than 0.0005)\, between the experimental and
computed curves of D vs. 8. An accuracy of this magnitude implies that
the limitations in the accuracy of equivalent circuit measurements lie
not in the standing-wave measurements but rather in the mechanical
measurements required to locate the input and output terminals.

The details of a successive approximation procedure for the precise
determination of the parameters Dy, So, and v will now be outlined. The
measured values of D' and 8’ when plotted yield curves of the form indi-
cated in Fig. 3-21.1 From Eq. (32) one sees that this curve should be
repetitive with a period of a half wavelength in both D’ and S’ and sym-
metrical about a line of slope —1. The curve intersects the line of slope
—1 at points of maximum and minimum slope. The point of intersection
at the maximum slope is D’ = D}, 8’ = §;. The maximum slope is v,
and the minimum slope is 1/y. First approximations to Dy and S, are

t A. Weissfloch, Hochfreq. u. Elektro., Vol. 60, 1942, pp. 67 et seq.
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obtained from the locations of the points of maximum and minimum
slopes by suitable averages. A first approximation to v is given by the
average of the maximum and the reciprocals of the minimum slopes. An
additional value for the average is given in terms of ', the width in
guide wavelengths between points of slope —1, as

—v = cot? 27 (é — %ﬁ w’)- (33a)

If the guide wavelengths in the input and output lines are unequal, the
value of w’ may be determined from a plot of D’ vs. §'. In practice,
however, it is most convenient to plot the absolute values of D and S as
in Fig. 3-21; in terms of the maximum spread w of this curve

1 w1 1
—v = cot? 2 <~—f ——{——) 33b
K T\ T 4NN, TN, (330)
It is to be noted that the slope of the symmetry axis of this curve is
—MAg1/Ag2 and hence the maximum slope of this curve is ¥A;1/Ags, ete.

D'+8’ )

Dy+S,

83
Fic. 3-22.—Plot of D’ 4+ 8" vs. 8 for —y == 1.

uy

Almost “matched’” two-terminal-pair structures have a —+v value of
approximately unity and consequently give rise to a D vs. S curve from
which it is difficult to evaluate and locate the points of maximum slope.
Since in such cases vy = —1 — e(e K 1), Eq. (32) may be rewritten in
the approximate form

D+ 8>~D)+ 8, — {; sin 47(S’ — S5). (34)
Thus, if the experimental data is plotted in the form D’ + S’ vs. §, the
curve shown in Fig. 3:22 is obtained. The values of Dy 4 S, S, and
¢/2r can be easily read from this curve and furnish first approximations
to the required parameters Do, So, and v.

The knowledge of the first approximations to Do, Sy, and v is suffi-
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ciently accurate in many cases. More accurate values can be obtained
if a theoretical curve of D vs. S, as computed by means of Eq. (32)
and the first approximation values, is compared with the measured
curve, A convenient mode of comparison is a plot of the difference
between the experimental and computed values of D vs. those values of
S corresponding to the experimental points. This difference curve of
AD’ = D,, — D!, vs. 8’ may or may not possess regularity. If regu-
larity is exhibited, the first approximations to Dy, S}, and y are inaccurate

DexD'DchD
0.002 -
|
|
|
|
0.001 @ I
|
|
l
|
7 So S
()
-0.001J
F1a. 3-23.—Plot of typical error curves.
(@ v = —2;ASo =0.001, ADe = Ay =0. (b) v = —2; Ay =0.01,AD0 = ASy = 0

and the difference curve should be analyzed to obtain corrections AD),
AS8{, and Ay to the first approximations. To determine these corrections
it is necessary to know the expected form of the curve of AD’ vs. 8’ arising
from variations AD{, AS}, and Ay in Eq. (32). The differential form of
Eq. (32), namely,

v AS] — sin 41r(f1r — Sy Ay

14
AD" = ADs - e S =Sy T st oS = &) 39
is the theoretical equation for the difference curve.

The actual difference, or error, curve of AD’ = D.,, — Dl vs. §
arises from errors ADg, ASj, and Ay in the choice of D}, S}, and v by the
procedure described above. This curve is plotted in Fig. 3-23 for typical
values of the various parameters. If, for example, the amplitudes of the
actual error curve at 8’ — S = 0, 3, and } are designated as A,, Ay, and

Ay, then from Eq. (35) the required corrections to be added to D}, Sy, and
v are found to be
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AD'=' 1 (’YZA/‘—A)
0 ‘)‘2 1 1% 0/,
, Y (36)
ASy = ST (A — Ao),

Ay = 2a[(1 4+ vDA, — Ay — Y2Ay].

Other methods of analysis of the error curve can be employed depending
on the value of v. The corrected values for Dg, Si, and v usually suffice
to describe all the measured data to within experimental aceuracy. The
accuracy itself can be estimated by plotting another difference curve
employing the second-approximation values of Df, S§, and y. This curve
should possess no regularity; its average deviation provides a measure of
the average error in the “electrical”’ measurement.

The electrical error in the standing-wave measurements is to be dis-
tinguished from the ‘‘mechanical’ error in the measurement of distance
to the terminal planes. Since the evaluation of v and the location of the
point of maximum slope can be obtained merely from relative values of
D and 8§, it is evident that these determinations involve only the elec~
trical error. However, the absolute evaluation of D} and S; necessary
for the determination of the network parameters may involve the measure-
ment of the distances from the point of maximum slope to the input. and
output terminals. Because of difficulties in maintaining accurate
mechanical tolerances in microwave structures, the latter measurement
is usually the largest source of error.

From the error curve, etc., it is possible to estimate the over-all
experimental errors 8D{, 8S;, and dy/y in D;, S, and y. The corre-
sponding relative errors éa/a, 6¢/c, and 8b/bin the network parameters a, b,
and ¢, [¢f. Egs. (15)] arising from the experimental errors may be expressed

as
da 4rA, AN 4rA, \? 7\’
a J(W 6D°> + (m 5So) + <Az )
éc _ 47rA3 , 2 4. s , 2 B‘Y 2 .
?_\/(mgal)“) +(m550> +<Aa7 ~ (37)
db = 47rA5 ’ : 417345 , LAY 5y 2
b \/(m 6D°) + (sin arS? 5So> + (Ae )
where
A, = a(B? + ~?) , A= B(1 + a’y?) ,
B — av)(aB + ) (ay — B0 + aB7)
PR 1S . VR ek S
’ (ay = B)(aB + 7) (¢ — Bv)(B — av)
Ay = oL 8Y PR )

T+ apr)B — a7) (@ = BY)(B — av)’
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and q, 8, v, a, b, and ¢ are defined in Egs. (15) and (17). The sensitivity
of the network parameters a, b, and ¢ to errors in D, So, and v evidently
depends on the choice of terminals as well as on the type of microwave
structure. For a desired accuracy in the values of the network param-
eters, the above equations furnish from approximate values for Dy, So,
and v the precision necessary in the determination of the latter quantities.
Instead of the relative error 8b/b it is frequently necessary to know the
relative error

8b da |, éc
5 VB Fac =bT+“(?+?>_
NETT 2(6 + ac)

Distance Invartant Representations.—As is evident from Egs. (37) a
precise determination of the equivalent-circuit parameters of a micro-
wave structure requires a precise measurement of the distances Dy and S,,
between the characteristic and the prescribed terminal planes. Accurate
measurements of these distances may require an absolute mechanical
accuracy at A\ = 3 c¢m, for example, of a mil in a distance of a few inches;
this is exceedingly difficult to attain—particularly when the prescribed
terminal planes are relatively inaccessible. Inaccuracies in mechanical
measurements may result in disproportionately large errors in the circuit
parameters. For instance, inaccurate distance measurements on a sym-

(37a)

- metrical structure may lead to an asymmetrical circuit representation

(i.e., a # ¢) despite the certainty of structural symmetry. All such
difficulties arise because of the dependence of the circuit representation
on ‘‘mechanical’”’ measurements of distances to prescribed terminal
planes. The difficulties can be avoided by use of a representation in
which the type of circuit is prescribed and in which the locations of the
terminal planes are not prescribed but rather ascertained from the
measurements. The values of the circuit parameters in such a repre-
sentation may be made highly accurate since they may be ascertained
solely from the ‘““electrical”’ measurement of the maximum slope v
of the D vs. § curve. Inaccuracies in absolute distance measurements
have no effect on the determination of v and hence are manifest only
as proportionate inaccuracies in the locations of terminal planes. The
determination of distance invariant representations of this type will now
be discussed.

The equivalent circuit representative of a nondissipative microwave
structure is dependent on the determination of three parameters. As
noted above, the tangent parameters Dy, So, and v form a convenient set.
To secure a representation in which the circuit parameters are inde-
pendent of measurements of the two distance parameters Dy and S,, it
is necessary to prescribe two bits of information about the desired repre-
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sentation. For example, the circuit representation may be prescribed
to be both symmetrical and shunt. The impedance parameters of the
desired representation will therefore satisfy the prescribed conditions

a=c and b=0. (38)
By Egs. (15) this implies
af = —1, a = By, (39(1)

and hence a and 8 are prescribed to be

—_— 1
a=*+—v, B_+7*:‘Y' (398)
The relative reactance of the shunt element is therefore, by Eqgs. (39) and
(13),
V=3

T

and is manifestly dependent on only the v of the D vs. S curve of the
given structure. The locations of the terminal planes for this shunt
representation follow from measurements of the locations of the charac-
teristic reference planes and from the values [by Eqgs. (39b) and (17)] of
Dy and 8S,, the distances between the characteristic and the desired
terminal planes.

There exist a variety of other distance invariant representations of a
microwave structure. For example, the representation may be pre-
scribed to be purely series; the admittance parameters of this representa-
tion are then identical with the impedance parameters of Eqs. (40).
The transformer representation illustrated in Fig. 3:15 also belongs to
this category. Of the various possible representations the most desirable
is usually the one in which the associated terminal planes are located in
closest proximity to the physical terminal planes of the structure.

3:b. Theoretical Determination of Circuit Parameters.'—The pres-
ence of a discontinuity structure in a waveguide results in discontinuities
in the propagating mode fields at the ‘‘terminals’ of the given structure.
As noted in previous sections such field or, equivalently, voltage-current
discontinuities can be schematically represented by means of a lumped-
constant equivalent circuit. The theoretical determination of the equiva-
lent-circuit parameters requires mathematical methods that do not
properly lie within the realm of microwave network engineering. Instead,
such determinations generally involve the solution of so-called boundary
value or field problems. The present section is primarily intended to

a=c¢= (40)

1 A comprchensive account of the theory of guided waves is in preparation by
J. Schwinger and the author.
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sketch those field theoretical techniques, devised largely by J. Schwinger,
which have been employed to obtain the equivalent-cireuit results pre-
sented in Chaps. 4 to 8.

The field problems to be discussed are concerned with the behavior
of electromagnetic fields not everywhere within a region but rather only
in those regions relatively ‘‘far” from a discontinuity structure; the
behavior in the latter is, of course, just that of the propagating modes.
The solution of such field problems presupposes the ability to determine
the electric and magnetic fields set up in a waveguide by electric currents
(i.e., tangential magnetic fields) on obstacle-type discontinuities and by
magnetic currents (i.e., tangential electric fields) on aperture-type dis-
continuities. The field representations summarized in Egs. (1-6) are of
the desired form provided the mode functions e;, the mode voltages V,,
and the mode currents I, can be determined. The mode functions are so
determined that the mode fields possess in the waveguide cross section
the transverse xy behavior dictated both by the field equations (1-1) and
by the requirement of vanishing tangential electric field on the nondissipa-
tive guide walls. Explicit evaluations of the mode functions e; for a
variety of waveguide cross sections are presented in Chap. 2. The corre-
sponding evaluation of the mode voltages and mode currents then follows
from the requirements that the mode fields possess the longitudinal z
dependence dictated by the field equations, and in addition that the total
fields satisfy the boundary conditions imposed *by the presence of the
discontinuity and the nature of the excitation in the waveguide. As
shown in Sec. 1-2, the determination of the longitudinal z dependence of
the mode amplitudes V, and I, constitutes a conventional transmission-
line problem and is described implicitly by the transmission-line equa-
tions (1-8). These transmission-line considerations are a necessary
preliminary to a major source of difficulty: the explicit evaluation of the
electric or magnetic currents set up on discontinuity surfaces by the
given excitation in the waveguide. These discontinuity currents must
be so determined that the total fields satisfy prescribed boundary condi-
tions on the discontinuity surfaces. Once the discontinuity currents are
found, the various mode voltages and currents follow by straightforward
transmission-line considerations. In particular there follow the domi-
nant-mode voltage-current relations at the terminals of the discontinuity,
and hence the equivalent-circuit parameters characteristic thereof.

The preceding paragraph has sketched in only qualitative detail the
salient features of a general method for the determination of equivalent-
circuit parameters. The methods employed in Chaps. 4 to 8 are basically
of a similar nature and differ mostly in their technique of successive
approximation to the desired rigorous results. These methods have been
classified as
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1. The variational method.

2. The integral equation method.
3. The equivalent static method.
4. The transform method.

The particular method employed in the derivation of the equivalent cir-
cuit results in Chaps. 4 to 8 has always been indicated under Restrictions
in each section therein. The above methods will be briefly illustrated in
this section. The field problems presented by the Asymmeirical Capact-
tive Window described in Sec. 5-1b (¢f. Fig. 5:1-2) and the E-plane Bifur-
cation described in Sec. 6+4 (¢f. Fig. 6-4-1) have been chosen for simplicity

Y

3
j

b k J— ‘T’
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Bisected Equivalent
tongitudinal View Circuit

Frg. 3-24.—Bisected capacitive window.

of illustration; the methods to be discussed are, however, of quite general
applicability.

The equivalent circuit for a capacitive window in a rectangular
guide in which only the dominant Hi--mode can be propagated is, in
general, a four-terminal network. However, if the window is formed by
an obstacle of zero thickness and if the input and output terminal planes
are chosen coincident with the plane of the window, the equivalent net-
work becomes pure shunt, since the electric field and hence the dominant
mode voltage are continuous at the terminal plane. The associated field
problem, whose solution is necessary for the determination of the relevant
equivalent-circuit parameter, need be concerned with the field behavior
in only the input half of the structure. This is a consequence of choosing
the arbitrary excitation in the input and output guides such that the
inward-flowing dominant-mode currents at the input and output termi-
nals are equal. Under these circumstances the tangential magnetic and
electric fields in the aperture plane are zero and a maximum, respectively,
with a consequent symmetry of the field structure about the terminal
plane. A sketch of the bisected structure and its associated equivalent
circuit is shown in Fig. 3-24. It is first necessary to find in the input
region z < 0 a solution of the field equations (1-1) subject to the boundary
conditions of

1. Vanishing of the electric field tangential to the guide walls at
y =0,b.
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2. Vanishing of the electric field tangential to the obstacle surface
atz=0d <y <b.

3. Vanishing of the magnetic field tangential to the aperture surface
atz =0,0 <y <d.

4. Excitation by the dominant-mode current I at the terminal plane
T.

This field problem will be solved not for the case of a rectangular wave.
guide region but rather for the simpler case of a parallel-plate waveguide;
the uniformity of the structure in the z direction implies that the equiva-
lent circuit results for the parallel-plate guide (with principal mode inci-
dent) become identical with those for the rectangular guide on replace-
ment of the space wavelength X in the former by the guide wavelength A\,
in the latter.

The transverse electric and magnetic fields in the input region z < 0
may be represented in accordance with Eqs. (1-6) as

mm@=2vmmw,

(41)
mma=zhwmm

where h, = zo X e,.

By virtue of principal-mode excitation and uniformity of the field
structure in the z direction there is no z component of magnetic field ; hence
only E-modes are necessary in the representation. From Eqs. (2-15)
the E-mode functions in a parallel-plate guide of height b are given by

€, = — - cos %YO = ex(¥)¥o0,
(42)
h, = + %’cos nry Xo = h.(y)Xo,
b
wheren =0,1,2,3, . . ..

Imposition of the boundary conditions 2 and 3 at the terminal plane

z = 0 results in

©

0= z V.ea(y), d<y<hb, (43a)

0= 2 Lh.(y), 0 <y <d, (43b)
0
where V. and I, represent the mode amplitudes at z = 0. From the

orthogonality [Egs. (1-5)] of the mode functions it follows from Eqs. (43)
that
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Vn

/; ) E(y)ea(y) dy, (44a)

In

_L , HW)ha(y) dy, (44b)

the integrals being extended over the aperture and obstacle surfaces,
respectively, and the functions E(y) and H(y) being defined by

E(y,0) = E¥)¥o
and

Hy,0) = H(y)%o.

The mode amplitudes V, and I, are not unrelated. The nonpropagating
nature of the higher modes implies that the higher mode transmission
lines are “matched,” and hence for n > 0 (noting the convention that
impedances are positive in the direction of increasing z)

In = '—YnVn or Vn = —ZnIn) (45)

where by Sec. 2-2¢ the characteristic admittance Y, and the propagation
wave number k, of the nth E-mode transmission line are given by

1 € 2
Y. = 7 = ;(:7 Kn = \/kZ — (%) . (46)

Equation (43b) may be rewritten by means of Eqgs. (45) in the form

Ih(y) = Z YaVoha(y), 0 <y < d, )
1

where hereafter for simplicity of notation the o subseript shall be omitted
from all the dominant-mode quantities. By the use of the expressions
(44a) for the mode amplitudes V,, Eq. (47) can be rewritten as an integral
equation for the determination of the electric field E(y) in the aperture,
namely, as

ITh(y) = — ﬁ ) GwyEW) dy, 0<y<d, (48)

where

@

Gy = z Yoha(9)ha(y).

1

The interchange of the order of summation and integration involved in
the transition from Egs. (47) to (48) is permissible provided the boundary
condition (43b) is understood to relate to the planez = 0 —. After solu-
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tion of the integral equation (48) for K(y) the circuit parameter 3 ig
obtained from the relation

B I I
Ig =7 = (49)

a result which is independent of I by virtue of the linear relation hetween
the aperture field E(y) and the exciting current /. An alternative expres-
sion for the shunt susceptance B can be derived on an obstacle basis
rather than the aperture basis considered above; the derivation on an
obstacle basis proceeds via Eqs. (43b), (45), and (44b) by determination
of the relation between the obstacle field H(y) and the exciting voltage.
However, the evaluations of the circuit parameter B to be discussed
below will be confined to the aperture treatment based on Eq. (49).

a. The Variational Method.'—Although a rigorous method of evalua-
tion of the susceptance of the capacitive window requires the solution
of the integral equation (48) for E(y), it is possible to avoid this by a
variety of approximate methods. The variational method is based on
the following expression for the susceptance:

)

S E(y)ha(y) dy\’
Sy =D LBk
[ E@h) dy
1 ap

1

v
<!~

derivable on multiplication of Eq. (48) by E(y) and integration over the
aperture region 0 < y < d. The importance of Eq. (50) lies in its sta-
tionary character with respect to variations of E(y) about the correct
aperture field. More explicitly, if a field E(y) correct only to the first
order is inserted into Eq. (50), the susceptance determined therefrom is
correct to the second order. Moreover for the case of the above-men-
tioned capacitive window, wherein only E-modes are exited, the sus-
ceptance determined from the so-called variational expression (50) is a
minimum for the correct field E(y). A judicious choice of a trial field
is thus capable of giving reasonably correct values of susceptance without
the necessity of solving the integral equation (48). One also notes that
the variational expression is dependent only on the form of a trial field
E(y) and not on its amplitude.

As an example let us employ the trial field E(y) = 1 in the variational
expression. Evaluation of the resulting integrals in Eqgs. (50) and use
of Egs. (46) then lead to the approximate expression for the relative
susceptance

‘A monograph on the use of variational principles in diffraction problems, ete.,
is being prepared by H. Levine and J. Schwinger (to be published by John Wiley
and Son, New York).
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sin nrd) *
b

8b 1
A . 20\*\ nwrd
1 LA by T

B
0% (51)

b

The relative susceptance may be evaluated numerically by direct sum-
mation of the series in Eq. (51). For example, when d/b = 0.5 and
2b/N < 1, the addition of a few terms of the series yields

B 8
F= % (0.42),
whereas the rigorous result given in Sec. 5-1b (if A — \,) yields
B 8
¥y (0.35),

the approximate result being about 20 per cent larger. For other values
of d/b, for example, when d/b << 1, direct summation of the series may
become prohibitively tedious because of poor convergence. In this
range it is desirable to employ an alternative method of summation. To
this end Eq. (51) may be rewritten as

B 8b sin? na 1/26\ sin? na
Y [E nia? + 2 (T) z nsa? + ] (52)
1 1

for 2b/x < 1 and with « = nd/b. Equation (52) can be summed in a
variety of ways. For example, if the sums in Eq. (52) are designated as

) ©

in? in2
F(a) — z smnanoz and G(a) _ 2 smnsna,

1 1

then twofold differentiation with respect to « yields

o

F'(a) = 2 z c°sn2"" = —2In2sinal ~ —21In 2, (53a)

o

G'(a) = 2 z 008 2N _ o (3 _ 4 F(a), (53b)

nd
1

with

If

F(o) = F'(0) = G(0) = G'(0) = 0,

¢(3) = an“ = 1.202.
1
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Hence on twofold integration of Egs. (53) to order a?

20 2.23b
F(a) ~ —a?ln (6—”) = a? ln (—;d—)

G(a) ~ {(3)a? = 1.202 (’;})

Therefore on insertion of these results into Eq. (52) the approximate
value of the relative susceptance in the range d/b <1 and 2b/N < 1

becomes
B 8 2.23b 2b

This is to be compared with the rigorous value given in Sec. 5-1b to the
corresponding order and in the same range (note A — \):

2= 87”[111 (fg) 41 (2)\”) : ] (54b)
It is to be noted that the approximate value is again somewhat larger
than the correct one.

Although a variational procedure can provide a reasonably good
approximation to the correct values of circuit parameters, its accuracy is
dependent on a judicious choice of the trial field. A more refined choice
of field is embodied in the so-called Rayleigh-Ritz procedure wherein the
trial field is represented in terms of a set of independent (and usually
orthogonal) functions in the aperture domain. To illustrate this pro-

cedure for the case of the capacitive window let us represent the trial
field in the form

Ey) =1+ 2 Am COS mTﬂ—/: (55)
1

where, in accord with the properties of the variational expression (50),
the coeflicients a,, must be so chosen as to make the susceptance station-
ary and in particular a minimum. The substitution of Eq. (55) into (50)

yields
N N
ST [Doo +2 z wua; + z Dlmalam] (56)

1, 1

'~<1Ud

where, in view of Eq. (46) and the orthogonality of cos (mry/d) and h(y)
in the aperture,
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/ cos try ha(y) dy / cos %Y . (y) dy

Dy, = Dy = 7!7 Lo 2P d = d )
20\ :

E J - (7) ([, hw dy)

The imposition of the stationary requirements on B/Y, namely,

3 B N
Y 16b
T (o Y ) o o

I=1

m=123 - N

leads to a set of N linear simultaneous equations for the determination of
the unknown coeflicients @;.  On use of these equations in Eq. (56) one
obtains for the relative susceptance the simple result

N
%’ = %\Q [Doo + z Doz(lz] (58)
1

which represents an upper bound for the correct result. For N =0
Eq. (58) reduces to the value

-3
previously obtained in Eq. (51). For N -— « the representation of
E(y) in Eq. (55) becomes complete and Eq. (58) generally converges to
the rigorous result.

It should be pointed out that a corresponding variational procedure
can be developed in terms of the obstacle current rather than the aperture
field; in the case of the capacitive window this leads to approximate
values of susceptance that provide a lower bound to the correct value.
A combination of these two procedures can quite accurately determine
the true value of susceptance.

b. The Infegral-equation Method.—The susceptance of the capacitive
window can be obtained by direct solution of the integral equation (48)
for the aperture field E(y). It is not generally feasible to solve this
integral equation exactly because of the termwise method of solution.
However, an approximate integral-equation solution for E(y) coupled with
its subsequent use in the variational expression (50) provides a highly
accurate procedure.

A general method of solution of the integral equation (48) is based on
a diagonal representation of the kernel G(y,y’) in terms of a set of func-
tions orthogonal in the aperture domain. The relevant functions are
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the eigenfunctions of the kernel regarded as an integral operator in the
aperture domain. It is difficult to obtain such a representation for the
dynamic kernel G(y,y’). However, the desired representation can be
obtained for the static (k*? — 0) kernel G,(y,y’), where

G(y,y) = 2 Yoo ha(1)ha(y")
1
2jwe  cos Z%r}{ cos mll;y we Ty my’
w _ o swe TY Ty’
——W—E—n—— Jﬂ_anCosb cos (59)

1

where the static characteristic admittance Y,, of the nth E-mode is

—Jee 1
Y'Ll H_ Zﬂ. (60)
b
On introduction of the change of variable
cos T = sinz T2 md cos 6 + cos? (61)

b 2b

which transforms the y domain 0 to d into the 8 domain 0 to 7, one
obtains the desired diagonal representation of the static kernel as

2b

Gi(y,y)

_j_‘;’?eln (2 sin? ;—(Z lcos 8 — cos 0’|)

e [ln sin? 2_111) _9 E cos n0ncos né ] (62)
1

in terms of the orthogonal functions cos n# in the transformed aperture
domain 0 to =.

To utilize the representation (62) the integral equation (48) is written
in the form

I

ad d
7 hiy) + EWy) - ﬁ .y EW) dy’ (63)
1

with
=1,
I = (Y. YV } (63a)

In view of the linearity of this integral equation the solution E(y) can be
written as
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E(y) = 16 + E 16a0), 64)

whence by Eq. (44a) it follows that

- m=123, ) (65)
V = ZmOI + z ZmnIny
1
on use of the definitions
d
Lo = — ﬁ &a(¥)hn(y) dy. (65a)

Equations (65) represent in network terms the coupling of the static
modes excited by the capacitive discontinuity. In view of Eqs. (63a),
which represent the terminal conditions on the higher-mode lines, the
desired dominant-mode admittance I/V can be obtained from Egs. (65)
by a conventional network calculation if the impedance parameters Zn,
are known. The latter may be found on determination of the partial
fields 8,(y) from the integral equations (n = 0,1, 2, - + -),

d
ha(y) = — /; Gy y)E.(y) dy’, 0 <y <d, (66)

obtained by substitution of Eq. (64) into (63) and equating the coefficients
of I,. Tt is readily shown with the aid of Eqs. (66) and (65a) that the
parameters Z.., obey the reciprocity relations Zn, = Znm.

To illustrate the approximate solution of the integral equation (63)
let us place I, = 0 for n > 2. The determination of the impedance
parameters for this case ﬁrst requires the solution of the integral equation
(66) forn = 0andn = 1. Forn = 0 Eq. (66) becomes, on introduction
of the representation (62) and the change of variable (61),

T 2 [T .., xd cos n cos né’\ ,,,
5= = /s &(8") (ln ese o + z —?——)do, (67)
1

where for simplicity &() = &(y) dy/d8. On equating the coefficients of
cos nd on both sides of Eq. (67), one obtains
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1
[ s ar = -
0
i~ In csc % (68)
/ &(8’) cos né’ d¢’ = 0, n 2> 1.
0

Hence, by Eqs. (44a) and (61) with (a = sin? #d/2b, 8 = cos? xd/2b),
there follows

1
Zoo = 8(6) do = I —T
\/_ 2‘7‘”1) In esc md
2b
T = — \[/ 8(0)(acos0+ﬁ)d0— ‘/_‘3 e
ln esc 5y (69)
Zyy = — \/5 / 8(0)(a? cos 260 + 4aB cos 9 + (1 — 3a)B) do
_ V201 =308
jweb . wd In csc xd
T %%

the parameters Z,, being obtained in a like manner. Similarly forn = 1,
Equation (66) becomes on use of Egs. (62) and (61)

‘J% (xcos 6+ 8) = —j '2—0)6 1(0') (ln ese +2 W_) de’;

(70)
whence
T J B
/ &(8) do' = —
0
J T ®In ese %
L4 'J% [4 (71)
/ £1(6’) cos 0’ do’ = — )
0 . 2we
I

/ 81(8') cosnb’' d¢’ = 0, n2 2,
0

and, as in Eqs. (69) with §(8) replaced by &1(6), one obtains by Eqs. (44a)
and (61)
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7 :__ﬂL
” ; Zweb In esc ﬂ,
J T 2b
-1 2 A
Zu = ‘36_13 (24 +1 . 1r_d ’ (72)
i~ D csC 7
Zo = 4a2+m ,
Se—b In 53107—':(z
- 3¢ %

ete.,, for Z,.. As a check the verification of the reciprocity relation
Z1o = Zo1 18 to be noted.

With the knowledge of the relevant impedance parameters the
desired discontinuity susceptance can now be obtained from Eqs. (65)
by a simple ‘“network” calculation. For in view of Eqs. (63a) and
I, =1I3= - - -0, one finds that

and thus on substitution of Eqgs. (60), (69), and (72) there follows after
some algebraic manipulation

B 8 xd Q COSA%
yow (et g/ (73)
1+ @Qsin? &
2b
where
o

2b\*
V=)
Equation (73) provides an approximate value for the relative susceptance
that is seen to agree with the first two terms of the more accurate value
quoted in Sec. 515 (if N — A,).

Since only the first two E-modes have been treated correctly, the
aperture field E(y) determined by the above integral-equation method of
solution is approximate. However, as stated above, the accuracy of the
equivalent-circuit calculation can be improved by use of this approximate
field as a trial field in the variational expression (50). To investigate

the limits of validity of such a procedure let us first rewrite Eq. (50) in
the form
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2P Sy o
1 1

The field E(y) defined by the integral equation (63) will be employed as a
trial field, but now the I, are to be regarded as unknown coeflicients that
are to be determined so as to make stationary (minimum in this case)
the susceptance B of Eq. (74). On multiplication of Eq. (63) by E(y)
and integration over the aperture, there is obtained on use of Eq. (44a)

v+ E 1.V, = z Y. V2. (75)
1 1

Substitution of this result into Eq. (74) and use of the network relations
(65) then yield

©

A A - N a 2
z Zmndmln + 2 (Yo — Yoo) (? Zmnln>
.B m,n=0 m=1 7LL=(0
.7—2— ® .
(3 )

m=0

) (76)

where one notes that J, = I.  The imposition of the stationary conditions

B _o n-0123 -

.
for the determination of the coefficients I, leads to the set of equations
(for all n)

w ©

jB (E zo,jm> Zon = 2Zod + 2 2 Zmall — (Yo — Yo) V]

0 m=1

from which, on noting the identity of the left side and the first term of the
" right side of these equations, one readily obtains the solutions

In=(Yme = Yo)Vm, m=1,23, ---. 70

Thus the choice of coefficients I,, that makes the susceptance B stationary
is exactly the choice required to make E(y) an exact solution of the
integral equation (63). It is not generally feasible to satisfy all of the
conditions (77). As an approximation one may choose I, = 0 forall
m > N. Under these circumstances the network equations (65), which
determine V,, and hence I m, become
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N
V = Zol + z Zonln,
¥ 78)
Vo = Zml + z Znnln,
with '
=1 In= Y — Yo)Vm, m=12"+--,N.

The use of these network equations in the variational expression (76)
then leads to the final variational result

.B_ .B, 5 B LAY
JE =7 35 + z (Yo Yous) (7) ’ (79)
N+1
where R
.B I I
.770 2 A (79a)

is the approximate discontinuity admittance obtained by the integral-
equation method of solution with I, = 0 for m > N. The sum in
Eq. (79) is thus seen to act as a variational correction to theintegral-
equation result.

As an example of the use of Eq. (79) let us consider the case N = 1
for which the integral equation result Bo/Y has already been derived in
Eq. (73). Since the correction series in Eq. (79) converges relatively
rapidly, only the first term thereof will be evaluated and this only to
order (2b/X)3. Thus, on use of Eqs. (78), (46), and (60), the first term
may be expressed relative to the characteristic admittance of the dominant
mode as

Z Z Z?O ?
Ys— Yo (Vz)z i 1 (2b)3 20211 ~ Z12Z10 + Y =7,
yoo\v/j 7ie Zolus = By + o
which, on evaluation of the wavelength independent terms within the
bracket by Egs. (69) and (72), becomes

3 2
jé— (2%)) (1 — 3 sin? 1;—%) cos* ;—(Z (80)

The substitution of Eqs. (73) and (80) into (79) then yields as the vari-
ational result for the relative susceptance

2
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~l o

8 in cse 9 ———QCOSA% + L (2Y (1 - 36 T8 cost T2 |
w|mesegp xd T T6\X 25 %

1 + Q sin '2—b
(81)

This is identically the result quoted in Sec. 5:1b (if X — A,); it is estimated
to be in error by less than 5 per cent for 2b/N < 1 and by less than 1 per
cent for 4b/A < 1.

¢. The Equivalent Static Method.—The equivalent static method of
solving the capacitive window problem of Sec. 5-1b resembles strongly
the integral-equation method just described. Asin the latter, the original
dynamic problem with only a dominant mode incident is reduced to a
static, parallel-plate problem with an infinity of modes incident. How-
ever, the task of finding the fields produced by each of the incident static
modes is now regarded as an electrostatic problem to be solved by con-
formal mapping of the original problem into a geometrically simpler
problem for which the potential (i.e., static) solution can be found by
means of complex function theory. The static problem for the case of
only the lowest, principal mode incident constitutes a conventional elec-
trostatic problem with a d-c voltage applied across the guide plates; the
static problems with a higher mode incident, although less conventional
electrostatic problems, are nevertheless solved in a manner similar to
that employed for the lowest mode. The use of conformal mapping in
the solution of the electrostatic problems implies a limitation of the
equivalent static method to microwave problems that are essentially two
dimensional. As in the previous method, no attempt is made in prac-
tice to obtain the formally possible exact solution; a variational procedure
is, however, employed to improve the accuracy of an approximate
solution.

As a preliminary to the electrostatic solution of the integral equation

(63) subject to Eqs. (63a), the unknown aperture field is now represented
as

E(y) = Vew) + z 16,0, (82)

1
where the proportionality to ¥ rather than to I, as in Eq. (64), is more

convenient for conformal mapping purposes. It then follows by Eqs. (44)
that

- /;ps(y)h(y) dy =1, /.p Ea(yh(y) dy = 0
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and also that

= YOOV - 2 TOnin,
! m=1,273, """, (84)
Vo = ThoV + E Z ol n,

1

>

where the significance of the proportionality factors Yoo, Ton will be
‘evident below, while by definition

TmO

- / E(Y)ha(y) dy,
=P (85)

Zpn = —/ Ea(y)hn(y) dy.
ap

In contrast to Eqgs. (65) the network equations (84) are of a ‘“mixed”’
type; the “network’’ parameters comprise the admittance Yoo, the imped-
ances Zmn, and the transfer coefficients Ton, Tno. From the knowledge of
these parameters the desired discontinuity admittance 1/V can be found
by straightforward solution of the network equations (84) subject to the
terminal conditions (63a). To determine the network parameters it is
first necessary to find the partial fields .(y). On substituting Eq. (82)
into the integral equation (63) and equating coeflicients, one finds that
the partial fields are determined by the set of integral equations (n = 1,
2,3 ...)

d
Yoh(y) = — /; G.(y,y")8(") dy', (86a)
0 <y <d,

d

—Ton My) + hu(y) = — /0 G(y,y")8.(y") dy', (86b)

from which it is apparent that these partial fields differ from those
encountered in the previous method. From Eqs. (85) and (86) one
derives the reciprocity relations

Ton = Thuo and Zon = Zinm.

To find the partial field &(y) by conformal mapping one observes that
the integral equation (86a) is characteristic of an electrostatic distribution
with a y-component electric field and an z-component magnetic field
(or stream function) given, when z < 0, by
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&(y) = ely) + 2 Tonen(y)em?,
1 ® (88a)
H(W) = (Vo = Joc () = ). TV ual)er,

1

for the individual terms in Eqgs. (88a) are solutions of Laplace’s equation,
and as is evident from Eqs. (85) and (87), the integral equation (86a) is
obtained from the boundary condition that 3¢(y) = 0atz=0,0 <y <d.
Equations (88a) are characteristic of an electrostatic distribution corre-
sponding to a unit d-c voltage across the guide plates, the term Yo, being
proportional to the “excess’ static capacitance arising from the presence
of the discontinuity at z = 0. Similarly the field distribution

6(w) = Zo sinh " 0, (4) + 2 Dnntn()eee,
et . (88b)
Ku(y) = — Ton h(y) + cosh n%z hay) — z Y meZmhom(y) ™7
m=1

associated with the integral equation (86b) corresponds to an electro-
static distribution with only the nth mode incident.

The parameters Yo, Tno, and Z,. can be found either by solving the
integral equations (86) or by finding the electrostatic field distributions
(88a) and (88b). The latter involves the determination of a stream func-
tion Y(y,2) (i.e., a magnetic field) satisfying Laplace’s equation and the
boundary conditions appropriate to the parallel-plate waveguide geom-
etry depicted in Fig. 3-25a. It is simpler to solve this problem not in
the actual waveguide but rather in a geometrically transformed wave-
guide in which the boundary conditions on ¢ are simple. From the
theory of analytic complex functions a solution of Laplace’s equation
in the transformed guide is likewise a solution in the actual guide if the
transformation is conformal. The desired transformation is one which
conformally maps the original waveguide region in the { = z 4 jy plane
of Fig. 3-25a into the upper half of the t-plane of Fig. 3-25b and thence
into the waveguide region in the {’ = 2’ 4 jy’ plane shown in Fig. 3-25¢.
The corresponding points in the {, ¢, and {’-planes are so chosen that
the aperture surface 0 < y < d, z = 0 in the ¢-plane is transformed into
the terminal surface 0 < y’ < b, 2/ = 0 in the {’-plane.

With the aid of the Schwartz-Christoffel transformation the function
that maps the guide periphery in the {-plane of Fig. 3:25a¢ into the real
axis of the ¢-plane of Fig. 3:25b is found to be
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cosh%r =, (89a)

while that which maps the guide periphery in the {’-plane of Fig. 3-25¢
into the real axis of the t-plane is

'
o cosh ’% +6=1t (89b)

where @ = sin® xd/2b and B = cos? 7d/2b [note the significant connection

t=— =—
= t=-1 t o2 |t=to
|
b |

o=t b |
d by l *_)/,
—2 - L__’zl
t=+o0o t=+1 — oo to 1 +oo t=t+oo t=1
(z+jy) (z'+)y)
Z plane t plane Z'plane
(a) (b) (c)
F1e. 3:25.—Conformal mapping from ¢ to {’ planes.
XN _
on = 0 on
¥y =0on

between Eqgs. (89b) and (61)]. The over-all mapping function for the
transformation from the ¢- to the {’-planes is thus

cosh 1_rb£ =a cosh[g— + 8. (90)

The solutions of electrostatic problems in the transformed waveguide of

Fig. 3-25¢ can be readily found, since the terminal conditions therein

correspond to a simple open circuit (¢ = 0) at the terminal plane 2z’ = 0.
The complex stream function

¥ =y +js 1)
that corresponds to only the principal mode incident (i.e., an applied d-c
voltage) in the waveguide of Fig. 3-25¢ is

¥ = Ay, (92a)

where the constant amplitude A (regarded as real) can be selected arbi-

trarily. The associated solution in the actual waveguide is therefore by
Eq. (90)

b cosh%g- -8
¥ =4 - cosh-'!\ ———J, (92b)

24
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or equivalently as a series in powers of e*/* as

v =40 [ln1 — ™ 9gemtn — B(1 — 3a)ernis 4 - - ] (93)
s @ b
If A is now set equal to jwe/+/b, the stream function y follows from Eqgs.
(91) and (92q) as
.web 1 [ 1

™ Ty 2wy
= R — 2 I pmelh 1 — 2wz/b
j— - \/B In z 3 cos 5 B( 3a) cos 3 ¢

v b

+] (94)

and evidently represents the static magnetic field produced by a principal
mode incident in the actual guide. On comparison of Eqs. (94) and
(88a) one finally obtains

TOl = ﬂﬁ; (95)
T(yz = \/E(l —‘301)6, c v

The corresponding complex stream function for only the (n = 1)-
mode incident in the waveguide of Fig. 8-25¢ is simply

¥ = B sinh 7%; (96a)

whence by Eq. (90) the complex stream function in the actual guide is
¥ = 2B snhz ™ /1 L S (96b)
a 2b . w
sinh? %

The latter may be expressed as a series in powers of e™” as

B -% 3
V=g le® — 26+ (1 2% + - -, (96c)

from which, on setting B = « 1/2/b and taking the real part, one obtains
the real stream function

¢=\/§[— +coshFcosFy—ae"”’cos-+ ] 97)

characteristic of a static magnetic-field distribution in the actual guide
with only the n = l1-mode incident. On comparison of Eqs. (97) and
(88b) one finds that
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Tw = \/Qﬂ,
a?
Zu =

_web (98)
i
T
With the knowledge of the network parameters in Eqgs. (95) and (98)
it is now possible to obtain the solution of the capacitive window prob-
lem in the approximation wherein only the two lowest modes are treated
exactly. The “mixed” network equations (84) reduce in this case to

YoV — Ty,
TIOV + lell,

~

1
Vi

(99)

with the ‘“terminal”’ conditions

I'=1 and I.= (Y, - V)V,
whence
2
I_y Ty
v P
1 YI - Yls

On insertion of the values of the parameters given in Eqgs. (95) and (98),
one obtains for the discontinuity susceptance

B oI 8 d QCOS";Z
T
Yy ojvv oot — ) (100)
1+Qsm42—b

the result obtained previously in Eq. (73) by the integral-equation method
and in agreement with the first two terms of the value quoted in Sec.
510 (if A — A,).

The accuracy of an approximate solution of the above electrostatic
problem can be improved by utilization of the aperture field E(y) found
thereby as a trial field in the variational expression (50). The basis for
such a procedure may be developed in a manner similar to that in method
b. As a trial field one first considers that electrostatic field E(y) defined
by the integral equation (63) in which the unknown coefficients I, are
to be so chosen as to make the variational susceptance B stationary.
Writing the variational expression in the form (74) and utilizing Eqs. (75)
and (84), one then obtains

Zmndmln + 2 (Y — Yoo (Tmov + z Z,,min)
m=1 : n=1

V2

oy

Ju = Yo + mr=l
(101)

[
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Imposition of the stationary conditions

B 0, n=1,23 -,
al,

with the arbitrary V being held constant, leads to an infinite set of
equations

@

0= z Zoallm — (Yme — Yo) Vo,

m=1
whose solution is readily seen to be
I =Yoo = Y)V, m=1223 -, =, (102)

This variational choice for I, is thus exactly that required to make the
trial E(y) rigorously correct. As a practical approximation let only the
first N of Eqgs. (101) be satisfied, the remaining I being set equal to
zero. The network equations (84), which represent the solution of the
electrostatic problem in this case, then become

N

T YooV - z TOnfn,

1

N m
Vm = TmOV + 2 Zmniﬂ;

1

[
i

=1,2,3 -+ ,N (103)

subject to

~

I=I and In=Tm—VYu)Va

By means of Egs. (103) the variational expression (101) may be rewritten

as
.B By , 1..\°
15—17+z (Y ),,,s)<‘,>, (104)
N+t
where we have defined
N
. B , Tl
ig =Yw— ) = (104a)

1

the latter being the approximate electrostatic result obtained by treating
only the N lowest modes correctly.  As in the corresponding, but not
identical, variational expression (79) the sum in l%q. (104) represents a
variational correction to the electrostatic result.
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As an example, the use of Eq. (104) for the case N = 1 will be con-
sidered. The approximate electrostatic result Bo/Y is then given by Eq.
(100). Asan approximation the correction series in (104) will be replaced
by its first term. By means of Eqgs. (103) this term may be expressed in

the form
1 _2&) Tho + ZnTy 2

Y, — Y, (Kz>2 _ 1
7Y V) \/ N: 2 (A 1
4 — (T) Z11+?1—_‘Y‘18

1 (2b\° , 120\ 2n2

the approximation being correct to order (2b/)\)%. Insertion of this cor-
rection into Eq. (104) yields for B/Y the same result as obtained in
Eq. (81) by the integral-equation method and quoted in Sec. 5-1b.

Although identical results have been obtained for the susceptance of
capacitive window by both the integral-equation and the equivalent-
static methods, it should be recognized that the latter method generally is
the more powerful for two-dimensional problems. This is a’ consequence
of the power of conformal mapping to solve Laplace’s equation in rather
complicated geometrical structures.

d. The Transform Method.—As a final illustration we shall consider
the equivalent-circuit problem presented by a six-terminal microwave
structure—the E-plane bifurcation of a rectangular guide treated in
Sec. 6-4. Although the various methods described above are likewise
applicable to the solution of this problem, we shall confine ourselves to
an integral-equation method. However, since the E-plane bifurcation
can be regarded advantageously as either an aperture or obstacle dis-
continuity of infinite extent, the associated integral equation will be of
the so-called Wiener-Hopf type. The solution of this integral equation
differs in detail from the integral-equation method discussed above and
moreover is rigorous.

A longitudinal view of the E-plane bifurcation together with the choice
of coordinate axes and dimensions is shown in Fig. 3-26a. For simplicity
of analytical discussion it is assumed that only the H,r-mode can be
propagated and that the bifurcation bisects the structure (note that the
height at the bifurcation is b rather than b/2 as in Sec. 6:4). By a special
choice of excitation the symmetry about the plane of the bifurcation can
be utilized so as to require solution of the field problem in only half of
the structure. Thus, an antisymmetrical choice of current excitation in
guides 1 and 2 will lead to a correspondingly antisymmetrical magnetic-
field distribution in which the tangential magnetic field in the ‘““aperture”
plane, y = b, z > 0, vanishes. The resulting field problem has then to
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be solved only in the reduced domain, shown in Fig. 3:26b, obtained on
bisection of the structure about the plane of the bifurcation; the corre-
spondingly reduced equivalent circuit shown in Fig. 3-26¢ is found on
(open-circuit) bisection of the over-all equivalent circuit of Fig. 6-4-2.
The two-terminal nature of the reduced circuit implies that no propa-
gating mode is present in guide 3 under the assumed antisymmetrical
excitation. A further simplification resulting from the uniformity of

©;
1
i — S L
ED | p @, p } 1 B
\4
. Xpz : *r 2 ?'_—’_
Longitudinal View Reduced Domain Reduced Equivalent
Circuit
(a) (6) (¢)

Fia. 3:26.—E-plane bifurcation.

the structure in the z direction permits the solution of the circuit problem
in a parallel-plate rather than a rectangular guide; the parallel-plate
results go over into those of the rectangular guide on replacement of the
space wavelength XA in the former by the guide wavelength A, in the latter.

Because of the uniformity of the structure in the z direction and princi-
pal-mode excitation of guide 1 the fields are derivable from a single
z-component, ¥(y,2), of magnetic field. The field problem in the reduced
domain of Fig. 3-26b is hence the scalar problem of determining a function
¥ satisfying the wave equation

a? d?
(w‘i'g;z‘*"kz)\ﬁ:o (106)

and subject to the following boundary conditions (with kb < x/2):

l.g—:’= fory =0and fory =b,2z < 0.
2.y =0 fory =b,z> 0.
3. ¢y > Icoskz — jYV sin kz forz — — .

S
4. Y — einile for 2z — + o where |«}| = J(%) — k%

The quantities I and V represent the dominant-mode current and voltage
at the terminal plane T'(z = 0), and Y is the characteristic admittance of
guide 1. Condition 4 states that the dominant field in guide 3 is that of
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the lowest nonpropagating mode therein. 1t is required to solve the field
problem specified in Fqs. (106) for the normalized susceptance

B I
Y- hT (107)

The representation of the field ¢ which satisfies Eq. (106) will be deter-
mined by a Green’s function method rather than by the equivalent modal
method previously emploved. To this end one utilizes the two-dimen-
sional form of Green’s theorem:

/ / WVG — GVy) dy d = / <¢g —G %) ds’,  (108)

a* 9?

dy 0z

where

V2 =

The double integral with respect to the running variables y’, 2’ is taken
over the entire reduced domain in Fig. 3-26b; the line integral with respect
to ds’ is taken over the periphery thereof; and n’ represents the outward
normal direction at the periphery. The Green’s function

G =Gly,zy'e) =Gz

will be defined by the inhomogeneous wave cquation

62 62
(8712 + 32 + 192) G = -6y —yHee—2) (109)

and subject to the following boundary conditions:

oG
1.@—0 fory =0, b.

2. ImG =0, @ bounded for z — — .

7\ 2
3. @— ¢lnlz for z— + =« where |k = \/<g> — k2

The delta function is defined by
8x) =0 if x # 0, / 8z — 2") d’ =1,

the interval of integration including the point x.  Iixplicit representations
of the Green’s function defined by Egs. (109) are readily found either in
the form
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sin k(z — z’) — sin klz — 2|

e—V (ne/bi—ktz~2'| ’
cos Y cos Y (110a)
\/ nm\® _ b b

+ o +jn
- 08 vk2—§'2yCOS VkQ_g-z (b_yl) efr(z——z’)dg-
2r VE = ¢tsin vk — §2h ’

— =ty

Glyzy%) =

or in the form

1

y<vy
Gy,2y'2) + o +in ’

_ cos Vk? — 2 (b — y) cos VEE — ¢y
27r \/_——§251nmb

— ©+jn

S
0<n<\/(%) — k2

In conformity with the defining equation and boundary conditions in
Eqs. (109) one notes that the representation (110a) satisfies the wave
equation except at 2/, where it possesses a discontinuity in the z derivative
of magnitude —é(y — y’); correspondingly, the representation (110b)
satisfies the wave equation save at y’, where it has a discontinuity in the
y derivative of magnitude —é8(z — 2’). Equations (110a) and (110b) are
seen to be representations in terms of modes transverse to the z- and
y-axes, respectively.

On use of the defining equations and boundary conditions (106) and

(109), one finds by Green’s theorem (108) that ¢ can be represented every-
where in the reduced domain as

eite= g

y >y, (1100)
with

V) = ﬁ T G EE) d, (111)

where for brevity we have set

a
E zl = __ Iyzl ]
@) = g b @) |
The unknown function E(2’), which is proportional to the z-component of
electric field in the aperture plane, may be determined on imposition of

the boundary condition 2 in Eq. (106). This condition leads to the
homogeneous integral equation
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0= / K(z — 2YE(2') dz’, z > 0, (112)
0
where K(z — z’) = G(b,2;b,2"). The solution of Eq. (112) for E(z) then

determines ¢(y,z) everywhere; in particular at 2z —» — « we note from
Eqgs. (111) and (110a) that

Yy = kib /; " B() sin k(z — 2) dz,

whence, on comparison with boundary condition 3 of Eq. (106),

1 B ' M ! !
I=—- l_cb/; E2') sin k2’ d?/,
1 0
. 7 o= — . ’ ’ ’
iYy kb/o E(2") cos k2’ dZ'.

In view of Eq. (107) the desired circuit parameter is seen to be

/ E(2') sin k2’ dz’
=70 = — tan ¢, (113)
/ E(2') cos k2’ d2’
0

~il

where
¢ = phase of/ E(2"ye % dz'.
0

If, in harmony with its interpretation as an electric field, we set the func-
tion E(2') equal to zero on the “obstacle’” plane z < 0, the desired angle ¢
becomes the phase of the Fourier transform of E(z) at the ““frequency” k.

To determine the Fourier transform of E(z) it is suggestive to rewrite
Eq. (112) as the Wiener-Hopf integral equation

H(z) = /+ “KG — E@) dr (114)

with
H(z) =0, z>0,
E(z) =0, 2 <0,

where, as is evident on comparison with Eq. (111), H(z) is the magnetic-
field function ¢ on the obstacle plane y = b, 2 < 0. The diagonal repre-
sentation of K(z — 2’) given in Eq. (110b) (with ¥y = ¢’ = b) permits a
simple algebraic representation of the integral equation (114) as

) = KO, where x() = — YT a1y
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in terms of the Fourier transforms

4+ =

() = H(z)e ¥ de, Im¢ >0,
4+ o

&) = / E(2)e~%2 de, Im¢ <« (116)
+ =

x() = K@)e#*dz, 0<Im{ <« <m

of H(z), E(z), and K(z), respectively. The validity of the transform
relation (115), which is an expression of the so-called Faltung theorem for
Fourier transforms, presupposes a common domain of regularity for the
various transforms. The existence of a common domain 0 < Im¢ < x;
is manifest from the regularity domains indicated in Eqs. (116), the latter
domains being determined by the infinite z behavior of the various func-
tions. An additional boundary condition on the field is implied by the
mere existence of the first two transforms in Eqs. (116); namely, the
behavior of E(z), for example, must be such that E(z) is integrable about
the singularity point z = 0. Thus it will be assumed that

E(2) ~z= asz— 0 (117a)
with @ < 1; hence by Eq. (116) it follows that
§) ~ ()=t as{— o, (117b)

Although both the transforms 3¢(¢) and &(¢) in Eq. (115) are unknown,
they may nevertheless be evaluated by means of Liouville’s theorem. The
theorem states that, if an analytic function has no zeros or poles in the
entire complex plane and is bounded at infinity, the function must be a
constant. To utilize the theorem let it first be supposed that the trans-
form X(¢) can be factored as

X_(5) cot v/k* — %
X)) == = S BVE T 00 118
© =% Vi (118)
where X_(¢) has no poles or zeros in a lower half of the {-plane while
X.(¢) has no poles or zeros in an upper half of the {-plane. Equation
(115) can then be rewritten in the form

K (03(@) = X-_(5)8E). (1190)

The left-hand member then has no zeros or poles in an upper half plane
while the right-hand member has no zeros or poles in a lower half of the
¢-plane. If all the terms in Eq. (119¢) have a common domain of regu-
larity, the function which is equal to the left-hand member in the upper
half plane and which by analytic continuation is equal to the right-hand
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member in the lower half plane must therefore have no poles or zeros in
the entire plane. If, as is already implied, the analytically continued
function is bounded at infinity, then by Liouville’s theorem this function
and hence both members of Eq. (119¢) must be equal to some constant A.
It thus follows that

A A
&) = %@ and X)) = —SC+(§)’ (119b)
whence from Eq. (113)
B A
tan—! (T’) = — phase of <J€_—(k)) (120a)
or independently of A
B 1X_(k) —x_(—k) (120)

Y jx-()+x(-k
To factor &(¢) in the regular manner desired in Eq. (118), one
employs the known infinite product expansion of the cotangent function

and obtains
o (2K 2 2h 2
*Q®) =~ _1 - {%lw [[1 <(:;')>2 + (;lzw?ﬁz
N L V=) B (m)

or on factoring

= 0 [IG,OPIG, -0 X.()

where the function

R a
1o =[] [\/1 - (%) +j%] ¢ Inr (122)

1

is manifestly regular and has no zeros in the lower half plane

Im¢ < \/(’5)2 — k2

If we now identify in Eq. (121)

_n@g
KO = g or (1230)
() = - B o, (1285)

we see that X_(¢) is regular and has no zeros in the lower half plane

™

S
Im¢ < \/<2—> — k? while X,.(¢) is regular and has no zeros in the upper
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half plane Im ¢ > 0. The argument x(¢) of the exponential is to be so
selected that the behavior of ®,(¢) and X_(¢) at infinity is algebraic.
This requirement is necessary, in view of Eqgs. (117), to permit the appli-
cation of Liouville’s theorem to Eqg. (119a). The required choice is
facilitated by a knowledge of the asymptotic properties of the gamma
function I'(z) at infinity. For one notes that, as { — «,

nG,:) l—[ ( + ) i(Tbsmm) g 1me
i J= et = — .,
.th . th
J r (.7 f—)
™ m™
where C = 0.577; hence from the asymptotic properties of the gamma
function

—i((c- 14 AE)E2
e ks m
bl

me,:) — {— o, (124)

1
V2580
On using Eq. (124) in Eq. (123b), one obtains

_ 2y
%@ = VEBETT T o e
Thus, to ensure the algebraic behavior of X_(¢) at infinity x(¢) must be
chosen as
;b
x(§) =j—=—1In2, (125)
and therefore
X-() = Vjth, - . (126)
From the asymptotic { — « behavior of &(¢) and X_(¢) given in
Eqgs. (117b) and (126), one deduces by reference to Eq. (119b) that the

constant A is real and that E(z) ~ 2z as 2— 0. It therefore follows

from Eqgs. (120), (123a), and (125) that the desired circuit parameter
B/Y is given by

ton (B) = Zmz 5, (2) -2, () = 22 1o

where the phase S; of the unit amplitude function I1(b,k) is designated by

(kb) E ( kb kb) Kb 2

Si|—) = sinT! —= — =), - ==

T nr  nr T A
1

Equation (127) is the rigorous result quoted in Sec. 6-4 for the special
case by = by = b therein and if X in Eq. (127) is replaced by A, (note that
the b of this section is the b/2 of Sec. 6:4). The distance d is evidently
the distance from the edge of the bifurcation to the open-circuit (zero
susceptance) point in guide 1.



CHAPTER 4
TWO-TERMINAL STRUCTURES

The waveguide structures to be described in this chapter are composed
of an input region that has the form of a waveguide propagating only a
single mode and an output region that is either a beyond-cutoff guide or
free space. In a strict sense such structures should be described
by multiterminal equivalent networks. However, in many cases the
behavior of the fields in the beyond-cutoff or in the free-space regions is
not of primary interest. Under these circumstances the above structures
may be regarded as two-terminal, i.e., one-terminal pair, networks
in so far as the dominant mode in the input guide is concerned. The
relative impedance at a specified terminal plane in the input guide and
the wavelength of the propagating mode in the input guide suffice to
determine the reflection, transmission, standing-wave, etc., character-
istics of such structures. In the present chapter this information will be
presented for a number of two-terminal waveguide structures encountered
in practice.

LINES TERMINATING IN GUIDES BEYOND CUTOFF

4-1. Change of Cross Section, H-plane. a. Symmefrical Case.—An
axially symmetrical junction of two rectangular guides of unequal
widths but equal heights (Hi--mode in large rectangular guide, no
propagation in small guide).

7 222
/ o i a iX
@ "'l//I L;W}W P

Q@ — T

gs\”\i\v

Cross sectional view Top view Equivalent circuit
F16. 4-1-1,

Equivalent-circuit Parameters.—At the junction plane T,
20"\’
Xu ‘1 - [1 - (T“> ] Xg}
24"\’ 20"\*
1—-11- ~ XoXos + 4f1 — ~ (X2 — Xo)
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Fic. 4-1-2.—Reactance of H-plane change of cross-section symmetrical case.
Experimental points for A/a
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X 2a a?

Zy A

oy

1 - N\ 2
0.429(1 — 1.56a?)(1 — 6.75a2Q) + 0.571(1 — 0.58a?2) \/1 - (?)

(1D)

where X1, X g9, and X, are defined in Sec. 5-24q, and

2a\’ a’ A
Q=1—\/1 ‘<3’x> a=" 7\,,~J VARV
b <2—)

Restrictions.—The equivalent circuit is applicable in the range
A > 2a’ provided 0.5 < a/N < 1.5, Equations (la) and (1) have been
obtained from the data of Sec. 5-24a by terminating the circuit indicated
therein with the inductive characteristic impedance of the smaller guide.
This procedure is strictly valid only if the smaller guide is infinitely long;
however, a length of the order of the width a’ is usually sufficient. Equa-
tion (la) is estimated to be in error by less than 1 per cent over most of
the wavelength range. Equation (1) is an approximation valid in the
small-aperture range and differs from Eq. (1a) by less than 10 per cent
for @ < 0.4 and for 0.5 < a/x < 1.

Numerical Results.—Figure 4-1-2 contains a plot of X)\,/Z2a as a
function of « in the wavelength range A > 2¢’, provided 0.5 < a/\ < 1.5.
These curves have been computed by the use of the curves in Sec.
5-24a.

Lxperimenial Results—A number of measured data taken at
N/a = 1.4 are indicated by the circled points in Fig. 4-1-2. These data
are quite old and are not of high accuracy.

b. Asymmetrical Casc.—An axially asymmetrical junction of two
rectangular guides of unequal widths but equal heights (Hic-mode in
large rectangular guide, no propagation in small guide).

Pood
>
V T .7 Z,
T a ! l e
|
E / W X.‘J
t'_a"—*'l L_ /// T
a —> T
Front view Top view Equivalent circuit

Fic. 4-1-3.




0.9

T T T
1 1 T
1
1 1L S
i
L I EEENEN S I
KN 1 T T
T I
M= T
1
Ty
™
™
H e
!Il et |
- H -
Mmu "N -
nu T
=
Ao 11
na A}
/y_ o
1
\
\
\
L
. FHtT
H I
|W W |
RN T ] 1 !
1 i
I !
i r ,
1 i I
N Q ] et < N o
- - o (=] = o
s
~< _2

1.0

08

0.7

06

0.5

04

03

0.2

0.1
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Equivalent-circuit Parameters:

x a xef=[i-(5)]x)

= — = » (la)
Zo N 2a"\ 20"\’
1—[1—<>\>:|X0X22+\/1—(‘>\—) (X2 — Xo)

X 2a ot
Zo A, 0.198(1 + 1.44a?) + 0.173(1 + 1.33a5)(1 + 41.34°Q)

where X1, Xs2, and X, are defined in Sec. 5:24b, and

-1 \/1 a\’ _a A = A
Q—- - - X) Q—E) g—*“'
1‘(%)

Restrictions.—The equivalent circuit is applicable in the range
A > 2a’ provided 0.5 < a/\ < 1.0. Equations (1a) and (15) have been
obtained from the data in Sec. 5-24b by terminating the circuit indicated
therein with the inductive characteristic impedance of the smaller guide.
Although this procedure is strictly valid only when the smaller guide is
infinitely long, it usually may be employed even when the length is of the
order of the width a’. Equation (1b), valid in the small-aperture range,
is an approximation that differs from Eq. (1a) by less than 10 per cent
when o < 0.4 and 0.5 < a/A < 1.0.

Numerical Results—In Fig. 4-1-4 X\,/Z:2a is represented as a

(1b)

function of « in the wavelength range X > 24/, provided 0.5 < a/X < 1.0. -

These curves have been computed with the aid of the curves of Sec. 5-24b.

4-2. Bifurcation of a Rectangular Guide, H-plane.—A bifurcation of
a rectangular guide by a partition of zero thickness oriented paraliel to
the electric field (H-mode in large rectangular guide, no propagation in
smaller guides).

il

' : L) O—— ey
! Do 01
i N
E a : ! 1 y
]
o a
[ S
—e 4 ?
T
Cross sectional view Top view Equivalent circuit
Fic. 4-2-1.

Equivalent-circuit Parameters—The equivalent circuit may be repre-
sented as a short circuit at the reference plane 7 located at a distance d
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Fi1a. 4-2-2.—Location of short-circuit terminal plane for H-plane bifurcation.
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given by
2rd

g

=z(l + oy In a1 + azln az) — Sy(x;1,0) + S1(z1;21,0)

+ 81(z2;02,0), (la)

where
2a, 2a, 2a
ry = X9 = — I=I1+I2 —
A A Ay
23 Qg A
oy = — Ay = —» )\g=:—’

SN(x;a)O) = z <Sin_1 —‘\/ﬁ — %)'

n=

Restrictions.—The equivalent circuit is valid in therange 0.5 < a/A < 1
provided A > 2a, (where a; > a,). Equation (1a) has been obtained by
the transform method and is rigorous in the above range.

Numerical Results—In Fig. 4-2-2 there are contained curves for
d/a as a function of a;/a for various values of a/\ in the permitted
range.

4.3. Coupling of a Coaxial Line to a Circular Guide.—A coaxial guide
with a hollow center conductor of zero wall thickness terminating in a
circular guide (principal mode in coaxial guide, no propagation in circular

guide).
o—
1.1

I
|
——twd

A atae. A
2a T |
| |

_L —_— o—
T T
Cross sectional view Side view Equivalent circuit
Fia. 4-3-1.

Equivalent-circuit Parameters.—The open-circuit reference plane T is
located at a distance d given by

2rd  2a 1 1
T'Y(lnf——_a+“ln

a) + 8{*(z;0) — 8{"(az;0) — 8§ (z';0,0),
(la)
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Skc. 4-3]

circuit terminal plane for coaxial-circular guide junction.

Fig. 4-3-2.—Location of open
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wd 1
= = In = -+- a ln + 1 - a) (1.478 - —‘;); (1b)
where
x:%’ x’:(l—a)x, C=£=g,
Si(x;0) = z (SID 1@ — %), Jo(rB.) = 0,
n=1

o

Sz (x;0,c) = 2 <sin—‘_yi — %); ™ = (¢ — 1)xon,
1

n=

Jo(xon) No(xonc) — No(xon)Jo{xonc) = 0, n=123...

Restrictions.—The equivalent circuit is valid in the wavelength range
A > 2.61a provided the fields are rotationally symmetrical. The location
of the reference plane has been determined by the transform method and
is rigorous in the above range. The approximation (1b) agrees with Eq.
(1a) to within 3 per cent if (2a/A < 0.3 and 1 < a/b < 5.

Numerical Results.—The quantity =d/a is plotted in Fig. 4-3-2 as a
function of b/a for various values of the parameter 2a/\. The summa-
tions S{° and S% are tabulated in the appendix. The roots 78, = xon
are given in Table 2:1; the quantities my, = (¢ — 1)xo» are tabulated as a
function of ¢ in Table 2-3. For large n it is to be noted that 8, ~ n — 14
and vy, = n.

4.4. Rectangular to Circular Change in Cross Section.—The termina-
tion of a rectangular guide by a centered, infinitely long circular guide
(Hie-mode in rectangular guide, no propagation in circular guide).

} T WYO

E o _iB
)
4 7777y ’
h— o —d T
Cross sectional view Side view Equivalent circuit
Fia. 4-4-1,
Equivalent-circuit Parameters.—At the terminal plane T
B, B Y,
Y, 2y, TIv (1a)
B, ab>\

Yo o FE (10)
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where B/2Y, = one-half the quantity B/Y,in Eq. (1a) of Sec. 5-4a and
3Y4/Y o = j times the quantity Y;/Y, in Eq. (1a) of Sec. 5-32.
Restrictions.—See Sec. 5-32. The approximation (1d) above agrees
with Eq. (1a) in the small-aperture range d/a < 1 and d/\ < 1.
Numerical Results.—The parameters B/Y, and jY{a/Y¢b may be
obtained as functions of d/a from Figs. 54-2 and 5-32-2, respectively.
Ezxperimental Results—Data for B,/Y, measured at X = 3.20 cm for
the case of a rectangular guide of dimensions ¢ = 0.900 in., b = 0.400 in.
joined to an infinitely long circular guide of variable diameter d are
indicated in Fig. 4-4-2. The circled points are the measured values; the
solid line is the theoretical curve computed from Eq. (1a). Since there
is no justification for the extrapolation of the formulas to the case d > b,
the theoretical curve has not been extended into this region.
4-5. Termination of a Coaxial Line by a Capacitive Gap.—A junction
of a coaxial guide and a short circular guide (principal mode in coaxial
guide, no propagation in circular guide).

jB

§
L

L

T

Cross sectional view Side view Equivalent circuit
Fig. 4:5-1.

Equivalent-circuit Parameters.—At the reference plane T

B 4b, afxb a—>b
YB“TIDB(ZE‘HHT) )

Restrictions.—The equivalent circuit is valid in the wavelength range
A > 2(e — b)/v1, where 7y, = (a/b — 1)xo1 may be found in Table 2-3.
The susceptance has been evaluated by the small-aperture method treat-
ing the principal mode correctly and all higher modes by plane parallel
approximations. Equation (1) is an approximation valid for 2xd/\ < 1
and d/(a — b) K1. For a/b =~ 1 the quantity v, =~ 1.
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LINES RADIATING INTO SPACE

4.6a. Parallel-plate Guide into Space, E-plane.—A semi-infinite
parallel-plate guide of zero wall thickness radiating into free space (plane
wave in parallel-plate guide incident at angle « relative to normal of termi-
nal plane).

I
» E— Y
1 ! 0
LA G
b | k
t ! N
d+! [0 S —
T T
General view Side view Equivalent circuit
FiG. 4-6-1.

b —

Equivalent-circuit Parameters.—At the reference plane T located at a
distance d given by

2 ow 2 - S0, )

the equivalent circuit is simply a conductance

a T
—}770 = tanh 7) (2)
where
. z
S1(z;0,0) = 2 <sm‘1% — 7,’);
n=1
b 4wd ;A
Z—?y 0=)\,; )\_COSa’

e = 2.718, v = 1.781.

At the reference plane 7”7 an alternative equivalent circuit shown in
Fig. 4-6-2 is characterized by

G _ __sinhm ®3)
Yy coshnz 4 cos @
% ~ %\IZ for )\3 «1, (3a)
! .
= ®
lyi; = % In 2,:—2,’ for% <1 (4a) T Fig. 4-6-2.
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Admittance at terminal plane 77,
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The angular distribution of the emitted radiation is desecribed by the
power gain function

sin (7z sin ¢) —2ezsind _
Tz sin ¢ ! T<¢<m )

G(e#) = G(0)
defined relative to an infinitely extended isotropic line source. The gain

§(0) is

mL

G(0) = fg?m' (5a)

Restrictions.—The equivalent circuit is valid in the range b/A" < 1.
The equations for the circuit parameters have been obtained by the
transform method and are rigorous in the above range.

Numerical Results.—The quantities 2xd/b and G/Y, are plotted in
Fig. 4:6-3 as a function of b/N. The alternative circuit parameters
G'/Y, and B’/Y, are plotted as a function of b/\" in Fig. 4-6-4. The
power gain function G(¢) is displayed in Fig. 4-6-5 as a function of ¢ with
b/\' as a parameter; only positive angles are indicated because the gain
function is symmetrical about ¢ = 0.

4-6b. Rectangular Guide into Bounded Space, E-plane.—A rectangu-
lar guide of zero wall thickness radiating into the space between two
infinite parallel plates that form extensions of the guide sides (H1,-mode
in rectangular guide).

|
! e
|
§
b ! G
. i | .
!
F— o — - L
T T T
Cross sectional view Side view Equivalent circuit
Fia. 4-6-6.

Equivalent-circuit Parameters.—Same as in Sec. 4:6a provided A\’
therein is replaced by A,, where

A, = T?‘_T;fz.
A
V- (3)
Restrictions.—Same as in Sec. 4-6a with N replaced by \,.
Numerical Results.—Same as in Sec. 4-6a with X’ replaced by \,.

4.7a. Parallel-plate Guide Radiating into Half Space, E-plane.—A
semi-infinite parallel-plate guide terminating in the plane of an infinite
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screen and radiating into a half space (plane wave in parallel-plate guide
incident at angle « relative to normal to screen).

& =
E T WT

Front view Side view Equivalent circuit
’ Fig. 4-7-1.

Equivalent-circuit Parameters.—At the reference plane T

G kb
v = A Jo(z) dz — Ji(kb), (la)
@ b
B kb 21
B 2b . eN
where
k= i_" N= 2 — 2718, y = 1.781.

Restrictions.—The equivalent circuit is valid in the range b/\’ < 1.0.
The circuit parameters have been obtained by the variational method
assuming a constant electric field in the aperture at the reference plane.
No estimate of accuracy is available over the entire range, but the error
is no more than a few per cent for (2b/A') < 1. Equations (1b) and (2b)
are static results and agree with Eqgs. (1e) and (2a), respectively, to within
5 per cent for (2rb/\") < 1,

Numerical Resulis.—The quantities G/Y, and B/Y, are plotted in
Fig. 4.7-2 as a function of b/N.

4-7b. Rectangular Guide Radiating into Bounded Half Space, E-plane.
A rectangular guide terminating in the plane of an infinite screen and
radiating into the half space bounded by two infinite parallel plates
that form extensions of the guide sides (H,-mode in rectangular
guide).
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{4

F1a. 4-7-2.—Admittance of parallel plate guide radiating into half-space, E-plane.
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t f/f,./_ﬁ ’ _/JM ° 5 Se
_1' WW‘T

Ag
T

Front view Side view Equivalent circuit
Fic. 4-7-3.

Equivalent-circutt Parameters—Same as in Sec. 4:7a provided N
therein is replaced by A;, where

NP

;)\:2-
Vi (a)

Restrictions.—Same as in Sec. 4'7a with A’ replaced by A,.

Numerical Results.—Same as in Sec. 4-7a with A’ replaced by A,.

4.8. Parallel-plate Guide into Space, H-plane.—A semi-infinite

parallel-plate guide having zero thickness walls and radiating into free
space (Hip-mode in rectangular guide of infinite height).

Zo

>
)

=
o

mv——
> —
O]
~ ---&-—
©
o]

o

Front view Top view Equivalent circuit
Fic. 4-8-1.

FEquivalent-circuit Parameters.—At the reference plane T located at
a distance d given by

—22(1 = In éj}a +3 - ;—; sin~! ?\A,,
- 2 2
-5 Z i\ Vi) et o) @
n=1
the cquivalent circuit is simply a resistance,
% = tanh g, (2)
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where
ra 1, A —\

Y=x T2y, A

N = M = 1781
x 2
()
At the reference plane 7" the equivalent circuit is that represented in

Fig. 4-8-2. The corresponding circuit parameters are

R’ sinh ¢ X sin 8

Zo coshy +cos® Z, coshy + cos Zco ,
3) K
where
b — 4md ix'
Ag Ng
The angular distribution of the emitted 7
radiation is described by the power gain Fia. 4-8-2.
function

Ta . ¢
oS (T sin ¢> cos? 9 _ma,e
o(6) = S(0) : SR S A 4)
2a sin ¢
- (Pesine)

which is defined relative to an infinitely extended line source. The gain

G(0) is

8(1 emee—N) /N

8(0) - ()\{/ + )‘) - ()\g - )\)6:2;'7*"' (5)

Restrictions.—The equivalent circuits are valid in the wavelength
range 2a/3 < N < 2a. The formulas have been obtained by the trans-
form method and are rigorous in the above range.

Numerical Results.—In Fig. 4-8-3 2rd/a and R/Z, are plotted as a

function of a/A. The alternative-circuit parameters R’/Z, and X'/Z,
are shown in Fig. 4-8-4. The symmetrical gain function G(¢) is dis-
played in Fig. 4-8-5 as a function of ¢ for several values of the parameter
a/\. '
4.9. Parallel-plate Guide Radiating into Half Space, H-plane.—A
. semi-infinite parallel-plate guide of infinite height terminating in an
infinite screen and radiating into a half space (Hi,-mode in parallel-plate
guide).
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Fi1c. 4-8-3.—Radiating parallel plate guide, H-plane.
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¢ in degrees
1G. 4-8-5.—Gain pattern for radiating parallel plate guide, H-plane.
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ool

Front view Top section view Equivalent circuit
F1a. 4-9-1.

AN

Equivalent-circuit Parameters.—At the reference plane T

G B
E_ Yo _ X_ Y (1
R I R )
v,) T\ v,) T\7,
where
)(3 2ra / (1 — z) cos(mz) Jo(kax) dx
0
% 2 1
+ = N [1 + 2( > ] A sin(rz) Jo(kaz) dz, (2a)
q Ay a
7, = 0.285 s )\—u <1 (2b)
and

g 2ma / (1 — z) cos(mz) No(kaz) dx

2 1

S o016 L« 3b)
a

Restrictions.——The equivalent circuit is valid in the wavelength range
3 < a/AN < 3. The equivalent-circuit parameters have been evaluated
by the variational method assuming a lowest-mode electric-field dis-
tribution in the aperture at the reference plane. The error is estimated
to be less than 10 per cent for B/Z, and perhaps somewhat larger for
X/Z,. Equations (2b) and (3b) are rough approximations to Eqgs. (2a)
and (3a), which are valid to within 10 per cent for a/A < 0.53.

Numerical Results.—The quantities R/Z, and X/Z, of Eq. (1) are
plotted in Fig. 4-9-2 as functions of a/X\ for the range 0.5 < a/\ < 1.5.
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4-10. Apertures in Rectangular Guide. a. Rectangular Apertures.—
A rectangular guide terminating in a screen of finite size and radiating
into space through a rectangular aperture (H,-mode in rectangular
guide).

o[-
[

0.400"

| NN NN |
=Te b d
-]
B
Q1

Front view Side view Equivalent circuit
Fia. 4-10-1.

Equivalent-circuit  Parameters (Experimental).—At the reference
plane T

?0+j?0=1—:{——-1:‘. (1)

A number of values of I' = |T|e® = |T'| ¢, measured at X = 3.20
em. for radiation into space through rectangular apertures in a 145-in.
thick screen, are presented in the following table:

P n.

y 0.400in. | 0.300in. | 0.200in. | 0.100in. | 0.050 in.
dy, in. | -

0.900 0.31[—90° | 0.42/—109° | 0.54] —123° | 0.77]—138° | 0.87| —145°

0.800 0.28 -74°

0.750 0.25/ —58° | 0.36]—68° | 0 51]—102° | 0.68/—120° | 0.80|—134°

0.600 0 26[32°

0.500 | 0.58/95° | 0.61]102° | 6g/113° | 0.77]130°

0.400 0 88[137°

0.300 0.98|161°

0.200 1.oj171°

For radiation through rectangular apertures into a space bounded by
“infinite”” parallel plate extensions of the top and bottom sides of the
rectangular guide, the values of T become
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w
0.400in. | 0.300in. | 0.200in. | 0.100in. | 0.050 in.

dy, in.

0.900 0.16{—7° | 0.30[—50° | 0.38]—91° | 0.68]—121° | 0.79] —138°

0.800 0.28]16°

0.750 0.2339° | 0.17]21° 0.23—39° | 0.47|—95° | 0.64|—115°

0.600 0.57/87°

0.500 0.74]118° | 0.74{122° | 0.80]129° | 0.86[140°

0.400 0.90|144°

0.300 0.98]157°

0.200 | 1.0]168°

For power passing through rectangular apertures into a matched

guide of the same size as the input guide, the values of T' are

dy, in.
0.400 in. 0.300 in. 0.200 in. 0.109 in. 0.050 in.
dx, in.
0.750 0.10[100° | 0.07/97° | 0.09]—105° | 0.35|—116° | 0.55{—128°
0.500 0.62/123° | 0.64]128° | 0.69]134°> | 0.77]143°

b. Circular Apertures.—A rectangular guide terminating in the plane
of a screen of finite size and radiating into space through a circular aper-
ture (Hi-mode in rectangular guide).

Front view

Equivalent-circust

plane T

——‘ Fo.oso"

. IR TTFT

[
g
% ¥
b -jB G
beazasesorms: Ao
4
47
T
Side view Equivalent circuit
Fia. 4-10-2.
Parameters (Experimenial).—At the reference
G . B 1—-7T
(2)
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Values of T measured at N = 3.20 cm. for radiation through an off-
centered 0.375-in. aperture in a screen of 0.050-in. thickness are

0 0.050 in. 0.100 in. 0.150 in. 0.200 in.

0.375 | 0.982]159.6° 0.982|159 6° 0.983]161.6° 0.986]162.8° 0.990/165.4°

For radiation into a space bounded by ““infinite’’ parallel-plate extensions
of the top and bottom sides of the guide, the values of I' become

x, 1n
0 0.050 in. 0.100 in. 0.150 in, 0.200 in.
d, in.
e >
0.375 0.982| 0.982159.9° 0.985(161 .8° 0.987]163.6° 0.990/165.8°

In both cases the aperture is symmetrically located with respect to the
height of the guide. The power radiated varies approximately as
cos?rz/a, where a is the guide width.?

4-11. Array of Semi-infinite Planes, H-plane.—An infinite array of
semi-infinite metallic obstacles of zero thickness with edges parallel to
the electric field (plane wave incident at angle 6, no propagation in
parallel-plate region).

l _%:lt :a :I:a j T x/cT

7
7
A |
. e 0-_] o
E ¥ | T
Front view Top view Equivalent circuit
Fic. 4-11-1.

Equivalent-circuit Parameters.—In the transmission-line representative
of plane waves traveling in the directions +6 the equivalent circuit is
simply a zero impedance at the terminal plane T. The latter is located
at a distance d from the edge of the array, where

! Cf. “Representation, Measurement, and Calculation of Equivalent Circuits for
Waveguide Discontinuities with Application to Rectangular Slots,” Report PIB-137
(1949), Polytechnic Institute of Brooklyn, New York for more accurate data.
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2xd . 2z . x . z
=2z In24sin!——— —sin"!' 00— —sin" !} ———
Neos o + V1 — 4yt . V1—2y V1+2y

+ 82(22;29,0) ~ Salz;y,y) — Salxyy,—y), (la)

2nd . 2z . T . T
— =2xIn2+sin"! ————— —sin"!———— —sin"! ——
Meos 8 ¥ * V1 — 42 V1-—-2y ' V14 2y

+ e ()
where
r = a cos [} a sin 6
TN T
. z x
S o, = - = - R < — T _ 2.
R R e = SRRV

Restrictions.—The equivalent circuit is valid in the wavelength range
A > 2a. Equation (la) has been obtained by the transform method and
is rigorous in the above range. Equation (1b) is an approximation that
agrees with Eq. (1a) to within 3 per cent for a/A» < 0.5. The relative
phase of the fields in adjacent (beyond-cutoff) guides of the parallel-plate
region is (2ma/\) sin 8.

Numerical Results—The reference plane distance wd/a may be
obtained from Fig. 5-22-2 as a function of a¢/x and 6 provided the b
therein is replaced everywhere by a.

4.12. Radiation from a Circular Guide, E;;-mode.—A semi-infinite
circular guide of zero wall thickness radiating into free space (Eo-mode
in circular guide).

1
: i Y,
: A0
20 ' : G
|
| rﬂ-‘d-—b-l: )‘g
i T T

Front view Side view Equivalent circuit
Fig. 4-12-1.

Equivalent-circuit Parameters.—At the reference plane T’ located at
a distance d from 7', where

wd A .S S R
- _In%+2 —ESID X‘ gsz (yyﬂl)

a g

[l .,
0

@+ @) N+ (ka)®

+

2Ol
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wd . SN _
FN —+2 asm )\‘, 0.264 — 591<10) 833( ); (1a)
the equivalent circuit is simply the conductance G defined by
G v
7, = ta.nh (2)
where
v Ko(z)]
1
‘P:m_§1n)\p+)\_ﬁ1/ tan [rlo(z)_ xdr 3)
L e z? + (@) \/x? + (ka)f
3, N+
|[/~xa—11n)\g_>\ (30’)
and
27 2r A Ka
E=55, == A = — =, = =
NoOSTN MT Ui oveelayr T

Jo(y+3,) = in— Y _¥ -
S2 (yyﬁl) - 2 (Sln ! \/m n)’ JO("an) = 0
2

n=

An alternative equivalent circuit at the reference plane 7’ is shown in
Fig. 4'12-2. The corresponding circuit parameters are

o
YO

G sinh ¢

Y, cosh ¢ + cos 2«d’ G’ B’

B snod @

Y, coshy + cos 2xd %’f

Fia. 4-12-2.

The angular distribution of the emitted radiation is symmetrical about
the guide axis. The power gain function defined relative to an isotropic
point source is

_ Ji(xB)  Jo(ka sin 6) E(ka,ka cos 8)
§(0) =2 -G% ka t E(ka,xa) — E(ka, —xa) (5)
1 - 6 sin 0>
g(8) ~ 02 for § < 1, (ba)
1

5(6) =

= ford =(xr —0) K1, (5b)
s
T 2

E(Z,y) = (I - y)% ev-H"(:,y)’ (6)

where




12 .
10 T : = -
] B - 3‘_G_'£ ;
~ S Y L]
038 = 25533 it
G 7rd o [ (b
'1—,6 or n o T
06 i
04
: : brofie bbb L
0.2
RV A o
off - : :
0.76 0.86 0.96 1.06 116 126 136 1.46 1.56 166 176

N

Fig. 4-12-3.—Radiating circular guide, Eoi1~-mode. Circuit parameters at terminal plane 7.
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176

1.56

136

Admittance at terminal plane 7.
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F1G. 4-12-4.—Radiating circular guide, Eci-mode.
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E@y) = (z — y)*e, (6a)

< Ko(t)]
tan 1[
F(zy) = }r[ w1o(t) ¢ dt

VeEF 2 ryye t o

Restrictions.—The above formulas have been obtained by the trans-
form method and, for the indicated field symmetry, are rigorous in the
wavelength range 1.14a < N < 2.6la. For xa < 1 the approximate Eq.
(1la) is correct to within 2 per cent and Eq. (3a) to within 1 per cent.
Equation (6a) is correct to within 1 per cent for y > 0, i.e., § > 90°.

Numerical Results.—Curves of rd/a and G/Y, as a function of 2a/A
are presented in Fig. 4-12-3. In Fig. 4-12-4 G'/Y, and B’/Y, are plotted
as a function of 2a/Ax. The graph of the power gain function G(8) as a
function of # with 2a/\ as a parameter is given in Fig. 4-12-5.

"4-13. Radiation from a Circular Guide, H;;-mode.—A semi-infinite
circular guide of zero wall thickness radiating into free space (H¢-mode
in circular guide).

- \
: | Zo
|
(‘ 2a :AG | R
) t .
i |
| i )‘y
———— ]~}
T' T T
Front view Side view Equivalent circuit
Fig. 4-13-1.

Equivalent-circuit Parameters.—At the reference plane T located at
a distance d defined by

M _ L —Bign X _ Ly
a—ln7a+2 g Sin N yS (y;80)
o fe 2 [T
+ 1 Ki(z) z dx )
2 .Jo 2 + (rB{V vzt £ (ka)?

LS ln—— +2- ”ﬁ‘ sint X~ 0.383 (%2) 0379( 4 (1a)
a "~ o 10 10
the equivalent circuit is simply the resistance R defined by

R _ 2

'Z‘; = tanh Q’ (2)
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where
= [ K@
tan™! | ——<
R TN VI S [ Il(x)] x dz
¥ =xa—gln A — A T [ 2+ (®8)* /z? + (ka)? ®)
N 1A+
¢:Ka_11n>\"~>\' (3(1)
and
P S W S y="2

N ) I CEAR
& AR
An alternative equivalent cireuit at the reference plane 77 is indicated
in Fig. 4-13-2. The corresponding circuit parameters are

Zy , E _ sinh ¢
R Zo  cosh ¢ + cos (2«d)’ 4
X' sin2d )
Z, ~ cosh y + cos 2d
X' The angular distribution of the emitted
Ng radiation is symmetrical about the guide axis.
T The power gain function defined relative to

Frg. 4-13-2. an isotropic point source is

_ 2kka® Jo(rBy)J 1(ka sin 6) H(ka,ka cos )
50 = g L <ka ) 0)2 H{ka, —va), —H(raxa) @

—= 8l

3
G(6) = 6* for 8 K 1,
G(8) = (r — 6)? for (r — 0) K 1,
where
Hzy) = V3 — g eren, (©)
H(zy) ~ Vz —y e, (6a)

L K,<z>]
tan—! [
Flay) = }r[ wli(2) t dt

Vet sty Ve Tat
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22

P

21

19

Circuit parameters at terminal plane T.

Six

17

1.6

FiG. 4-13-3.—Radiating circular guide, Hoi-mode.
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F1G. 4-13-5.—Gain pattern of radiating circular guide, Ho;-mode.
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Restrictions.—The above formulas have been obtained by the trans-
form method and, for the indicated field symmetry, are rigorous in the
wavelength range 0.896a < X < 1.64a. The approximation (la) is
correct to within 5 per cent and (3a) to within 1 per cent. Equation (6a)
is correct to within 2 per cent for y > 0;i.e., § < 90°.

Numerical Results.—Curves of #d/a and R/Z, as a function of 2a/x
are presented in Fig. 4-13-3. In Fig. 4-13-4 R'/Z, and X’/Zs are plotted
as a function of 2a/\. The graph of the power gain function G(6) vs. 8
with 2ra/\ as a parameter is given in Fig. 4-13-5; the monotonic decrease
to zero of the curves in the range 150° < 8 < 180° is omitted.

4.14. Radiation from a Circular Guide, H,;-mode.—A semi-infinite
circular guide of zero wall thickness radiating into free space (Hi-mode
in circular guide).

Front view Side view Equivalent circuit
Fic. 4-14-1.

Equivalent-circuit Parameters.—At the reference plane T the voltage
reflection coefficient is

1~ X
'A—I+JA2 1+?-(-)
where
_btx )\ﬂ_)\%c?‘b
L_fo—K<)\g+)\> e
ERVESY
Al_)xg—)\’
2
Az=7r—):1(1+%> eorei2®
and

_ 2 RS et N 22, o
tb—)\v (ln'ya+2> 8] sin )\—g S4 T,,’ﬁl

a [~ x dx 1 wI’(x)T> -411
had [ —— 1 .
% ﬁ T (B A T )t {<1 + [K;(x) ‘




Skc. 4-14] RADIATION FROM A CIRCULAR GUIDE, Hu-MODE 207

2 2 [ 2a
T+ Sf‘(%“) - 84 l(T;O)

P, =
. @) |
_1 [1—L]m 1*[}({@)] dr.
4r . V2?2 + (ka)? - [rjl(x)]z z
Kl(I)
_ _2ma | 2a (" z dx 1 ) _K{(x),
C=-NtN ) PR Vet g ™ [ wl((x)]

L B - K@) _, —Ki@)] de
@ - T ./(; [1 VvVt + (ka)z] [tan =l {z) + tan o |z
and
&l A

Y xg=‘J1_ x \
3.41a

. 1
(800)% = (ka)® — (zo — Jyo)}, zo = 0.5012, yo = 0.6435,

©

S0 (z;0) = z <sin~x E f), Ti(n) = 0,
A n

N
B)
[}

v = 1781,

=3

i . z _z roary o
Spa) = z(sm N n) Ji(nBl) = 0.

na=2

The angular distribution of the emitted radiation is described by the
power gain function G(6,¢), where 8 and ¢ are the polar and azimuthal
angles. This function, defined relative to an isotropic point source (i.e.,
normalized so that its integral over all angles is 4r) is given by

_ 4kka® Ji{wBy)
§(6,9) = 8, H(kaxa) — H(ka,—xa)

|:cos?¢ M H (ka,ka cos 6)
1

_ (ka sin 0)
7B

. Ji(ka sin 8)
2 - - a b
+ 2 sin’¢ i E(ka,ka cos 6)
where
(x + y)% ev B~ . |
H(z,y) = ! A
( :y) Ix + an|z|y ¥ an|2 Ix T y +] 9
Lo (e ) e T
ce™ 0 Vitad (mﬂ, ' \/tz—}»—zi+z) T
v 1l feo ta 1 + 1 tan'lKl(t)
E(zy) = ¢ o Vera\Vitety vVere x) =110).

Ve +y
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The choice of coordinate system is such that ¢ = 0 corresponds to the
magnetic plane, ¢ = 7/2 to the electric plane (i.e., H. ~ cos ¢ and -
H, ~ sin ¢).

Restrictions.—The above equations have been obtained by the trans-
form method and are rigorous in the wavelength range 2.61a < A < 3.41a.

Numerical Results.—Graphical plots of the above equations are not
available. Tabulations of the summation functions S’ and S’ are
presented in the Appendix. Several of the Bessel function roots x;, = 78,
and xi, = w8, are given in Tables 2-1 and 2-2.

4.16. Coaxial Line with Infinite Center Conductor.—A "coaxial line
with a semi-infinite outer conductor of zero thickness and an infinite
center conductor (principal mode in coaxial guide).

H Y,

) 7/4"—/ G

T
1
__{ 0
2 - d A
1
2a T 7 T

Cross sectional view Side view Equivalent circuit
Fi1g. 4-15-1,

Equivalent-circuit Parameters—At the reference plane T located at
a distance d from the reference plane 7”, where

xd e\ T ( 0 )
a=b " “3a—-1b ka=0b Y% g
de 1 nlo(z)\* _,,
[ S G
1 a dx . L@\ .
_51_9[ * v (W ) ) o
a
nd eN O [1/ 1 2(a-b\( 1Y\, .
a—b”"w(a—b)“2[%(7,‘1)+§(T")(nw)+ ]
a

= b> A, (la)

the equivalent circuit is simply the conductance G defined by

G _ 14
?0 = tanh éy (2)
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where
- 1 = dz _, Ku(x) 1 _ 1
v=kia—0b) ;/ xtan‘rlo(x)[\/ = \/ = 2]
0 b (k“) b (;,—,)
3
¢ =k(a — b), ~ b> A\, (3a)
and
(C - l)x()n = XYn,y JO(XOn)NO(CXOn) - Jo(CXOn)No(XOn) = 0,
n=12 - -,
P 2 k(@ —b
S{“(y;O, %) = z [sm—1 (%) - %], k= T‘”; y = (Lr—)-; c= g-
1

At the reference plane 7’ the parameters
of the alternative equivalent circuit in-
dicated in the Fig. 4:15-2 are

Y,

G _ sinh ¢ X G' )

Yo cosh ¢y + cos 2kd’ 4

B sin 2kd ( r_/l\
Y, coshy + cos 2kd o

The angular distribution of the emitted
radiation is described by the power gain
function (defined relative to an isotropically radiating point source),

4 Jo(kb sin 8)No(ka sin 8) — Jo(ka sin §)No(kb sin 6)

Fic. 4-15-2.

G(6) =

™ sin2 [J2(kb sin 6) + N2(kb sin 6)]
Fo(k cos 6)
Fo(k cos 0)
Fub) _FB O
Fy(k) Fy(—F)
1 1
S(6) = & g M (PN 2 K1, y=1781, (5a)
="z )] T!
T
G(6) = L L r—0K1 (5b)
T — 614 [~kb T -
(r =0 F[ln[%(w—@)]] +1
where
1/m zdx tan™! floo((az)
F.(£) = ete’ 0 21+ (ha)t VT (ha)i+ha )
= gl £>0 (6a)

and F,(£) is obtained by simply replacing a in F,(£) with b.
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Sec. 4:15]
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Conductance at terminal plane T

F1G. 4-15-4.—Coaxial guide radiating into space.
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Restrictions.—The problem is treated by the transform method.
The equivalent circuits and the above formulas are rigorous in the wave-
length range

a—b

0

The quantity v,(a/b), as well as the quantities y.(a/b), may be obtained
from Table 2:3. Whena = b>> ), v.(a/b) = n and the formulas go over
into those for the radiation from parallel plates, E-plane, whose separation
is 2(a — b) (see Sec. 4:6a). Equation (la) is accurate to within 12 per
cent for b/a > 0.2, a/A > 0.1. Equation (3a) is accurate to within 15
per cent for b/a > 0.5, a/x» > 0.1. Equation (3a) is in error by 42 per
cent for b/a = 0.2, a/x = 0.1. Equation (6a) is valid to within a few
per cent for £ > 0, i.e., 8§ < 90°.

Numerical Results.—Figure 4-15-3 contains a plot of =d/(a — b) as
afunction of a/\ for various values of a/b. Figure 4-15-4 shows the
variation of G/Y, with (a — b)/A for a few values of a/b. The gain
function G(6) is plotted in Fig. 4-15-5 as a function of ¢ for a/b = 2 and a
few values of a/A. The summation S?(y;0,c) is tabulated in the
Appendix.

4.16. Coaxial Line Radiating into Semi-infinite Space.—A semi-
infinite coaxial line terminating in the plane of an infinite metallic screen
and radiating into free space (principal mode in coaxial guide).

<A< oo,

T T
Front view Cross sectional view Equivalent circuit
Fi1g. 4-16-1.

Equivalent-circuit Parameters.—At the terminal plane T'

1 /2 . .
% = — / Sld%g [Jo(ka sin 8) — Jo(kb sin 8)]3 (1a)
0

(=i~

N 22«1 (1b)

2 1 [x(b? —a?)] a b
3 ’ PUDY
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Fig. 4-16-2.—Conductance of coaxial guide radiating into half space.
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[~

g -1 /' [2Si(k V/a? + b2 — 2ab cos ¢)
0
0

ming . A\ ¢
— Si\2kasing ) — Si| 2kbsing )| de¢, (2a)

B _8a+b[, (2+ab ab
7 = - [E<a+b> - 1], vy <1, (2b)
)\]ng

where Si(x) is the sine-integral function, E(z) is the complete elliptic
integral of the second kind, and & = 2x/X\.

Restrictions.—The equivalent circuit is valid in the wavelength range
X > 2(a — b)/v,, where v, is determined from the first root x = xo1 of

Jo(x)No(x%)—Jo(x%>No(x)=0, x=a1r Yo
2_1
b

and may be found from Table 2-3. The circuit parameters have been
obtained by the variational method assuming a principal mode electric
aperture field and are presumed to be in error by less than 10 per cent over
most of the range of validity. The approximate Eq. (1b) agrees with Eq.
(1a) to within 15 per cent for (a — b)/A < 0.10 a/b 2 3; similarly Eq.
(2b) agrees with Eq. (2a) to within 15 per cent for (a — b)/\ < 0.10 and
a/b =z 2. The accuracy is improved in both cases for larger values of
a/b.

Numerical Results.—In Figs. 4-16-2, -3 the quantities G/Y, and B/Y,
are plotted as functions of (a — b)/X\, for several values of a/b.




CHAPTER 5
FOUR-TERMINAL STRUCTURES

A structure that contains a geometrical discontinuity is designated as
a four-terminal, or two-terminal-pair, waveguide structure if it comprises
an input and an output region each in the form of a waveguide propagat-
ing only a single mode. The over-all description of the propagating
modes is effected by representation of the input and output waveguides as
transmission lines and by representation of the discontinuity as a four-
terminal lumped-constant circuit. The transmission lines together with
the lumped-constant circuit form a four-terminal network that determines
the reflection, transmission, standing-wave, etc., properties of the over-all
structure. The quantitative description of the transmission lines
requires the indication of their characteristic impedance and propagation
wavelength; the description of the four-terminal circuit requires, in
general, the specification of three circuit parameters and the locations
of the input and output terminal planes.

In the various sections of this chapter a number of basic four-terminal
waveguide structures will be represented at specified terminal planes by a
four-terminal electrical network. The circuit elements of this network
are specified by their reactance or susceptance values. The latter do not,
in general, correspond to constant, i.e., frequency-independent, induct-
ances and capacitances, but this does not impair their usefulness. The
choice of terminal planes as well as of the form of the equivalent network
is not unique; other equivalent forms, which are desirable in particular
applications, may be readily obtained by the methods outlined in Sec.
3-3. Asstated above, five impedances and two propagation wavelengths
are employed for the description of the general four-terminal structure.
In the presentation of this information it is most convenient to specify
all impedances relative to the characteristic impedance of the input
transmission line, although any other impedance can be employed as a
norm. The propagation wavelengths of the input and output trans-
mission lines will be indicated explicitly in the equivalent-circuit repre-
sentation of the given structure. When both the input and output guides
are identical, this explicit indication will sometimes be omitted if no
confusion is likely.

A number of free-space structures are included in the present chapter.
Under appropriate conditions of excitation, the scattering of plane waves

217
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by gratings and arrays in free space can be treated (cf. Sec. 2:6) in the
same manner as scattering by a discontinuity in a waveguide. In both
cases the scattering is described by a four-terminal network of the type
described in the preceding paragraphs. The applicability of such a
description is restricted to the wavelength range in which the higher
diffraction orders, i.e., higher modes, cannot be propagated.

'STRUCTURES WITH ZERO THICKNESS

B-1. Capacitive Obstacles and Windows in Rectangular Guide.
a. Window Formed by Two Obstacles.—Window formed by zero thickness
obstacles with edges perpendicular to the electric field (Hi,-mode in
rectangular guide).

i |
d .
} ; Y, B Y,
E Ly
3 2y
T T T
Cross sectional view Side view Equivalent circuit

Fig. 5-1-1,

Equivalent-circuit Parameters.—At the terminal plane T for the
unsymmetrical case d’ # b — d:

B b | d ) 2Q, cos? 2(; cos? ;;) @+ d
7=)\— n | esc 5 b(d + d) wd
1 + @ sin? 55 sin? & 35 (d + d)
21[' 4 Ld — 1 7 ?
+ Q. [3 cos® oy cos? — 2% (@ +d) — s’ a7 cos? % (@ + d)] ], (1a)
where
Q" = —;—— —_ 1.

2b
b (nX)
For the symmetrical case d’ = b — d:
d
B 4 d Qs cos' 7
v = ln(csc—>+————

2b .l
1+ @;:sin 55

1/b\ , wd ? 7
+T6<5x7,) ( — 3 sin 2b> cost gy | (2a)
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B __4b 26\ | 1{xd\*  1{bY 1 (zd\*] d

= G e @) () [ G) ) fer o
B 2| (xd'\" | 1{xd\s |, 3({ b\ (rd"\' d
n=2lG) a@m) Q) @] Fer e

Restrictions.—The equivalent circuit is valid in the range b/, < %
for the unsymmetrical case and b/A, < 1 for the symmetrical case.
Equations (la) and (2¢) have been obtained by the equivalent static
method employing a static field in the aperture due to the incidence of
the two lowest modes; the higher-mode attenuation constants have been
approximated by nr/b for n > 3. Equation (la) is applicable in the
range 2b/A, < 1 with an estimated error that rises to less than 5 per cent
at the lowest wavelength range. Equation (2a) is applicable in the range
b/A; < 1 with an error of less than about 5 per cent and in the range
2b/X¢ <1 to within 1 per cent. Equation (2b) is a small-aperture
approximation that agrees with Eq. (2a) to within 5 per cent in the range
d/b < 0.5 and b/N\, < 0.5. The small-obstacle approximation (2¢)
agrees with Eq. (2a) to within 5 per cent in the range d/b > 0.5 and
b/x, < 0.4.

Nwumerical Results.—The quantities BN,/ Vb and Yob/B)\,, as obtained
from Eq. (2a), are plotted in Fig. 5:1-4 as a function of d/b with b/\, as a
parameter.

b. Window Formed by One Obstacle.—Window formed by a zero thick-

ness obstacle with its edge perpendicular to the electric field (Hi-mode
in rectangular guide).

—_—
I
d I
|
/ b
d l
¥
Cross sectional view Side view Equivalent circuit
Fic. 5-1-2.

Y, II B Y,

T

~3
~

Equivalent-circuit Parameters.—Same as Egs. (2a) to (2¢) except
that A, is replaced by »\,/2.

Restrictions.—Same as for Eqs. (2a) to (2¢) except that ), is replaced
by A,/2.

Numerical Results.—If the N\, in Fig. 5-1-4 is replaced by \,/2, one
obtains a plot of B)\,/2Y b as a function of d/b with 2b/\; as a parameter,
where B/Y, is now the relative susceptance of a window formed by one
obstacle.
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c. Symmetrical Obstacle—A symmetrical obstacle of zero thickness
with its edges perpendicular to the electric field (H -mode in rectangular

guide).

S
[ i
)
~

s |
d b o 0
T 1T
T T

Side view Equivalent circuit
Fig. 5-1-3.

o —-

Cross sectional view

Equivalent-circuit Parameters.—Same as for Egs. (2a) to (2c).

Restrictions.—Same as for Egs. (2a) to (2¢).

Numerical Results.—Same as for Eq. (2a) and plotted in Fig. 5-1-4.

6-2. Inductive Obstacles and Windows in Rectangular Guide.—a.
Symmetrical Window.—Symmetrical window formed by zero thickness
obstacles with edges parallel to the electric field (H,-mode in rectangular

guide).

W *
/ / --- T Zy X Zg
it 4‘1:‘ T T
a
Top view Equivalent circuit
F1g. 5-2-1.

oy —e

Cross sectional view

Equivalent-circust Parameters.—At the terminal plane T

_ s 1. _ ., 7l
Zo " N “%[1+4[\/T l}sm a
1‘(37)

+of2)[1 - 420 =T BQ — 7)1 —d]} (10

A a? g?
X _a, ,md 1(xd 2] d
X a  ,nd 2 (nd’ 2] &

where

sin md 8 = cos md
a = 7=’ = 5
a 2a
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and F(a), E(a) are complete elliptic integrals of the first and second
kinds, respectively.

Restrictions.—The equivalent circuit is applicable in the wavelength
range 240 < A < 2a. Equation (1a) has been derived by the equivalent
static method employing the static aperture field set up by an incident
lowest mode and, in addition, the higher-mode attenuation constant

approximations
JOEY = (Y = - (Y
a ) T a 2 \n\

forn = 5. Intherangea < A < 2a Eq. (1a) is estimated to be in error
by less than 1 per cent; for 23a < A < a the error is larger, but no
estimate is available. The term in (a/2)? of Eq. (1a) accounts for not
more than 5 per cent of X/Z,. The approximate form (1b), valid in the
small-aperture range, agrees with Eq. (la) to within 4 per cent for
d < 0.5a and a < 0.9\. Equation (l¢) is an approximate form valid in
the small-obstacle range; for d’ £ 0.2¢ and a < 0.9\ it agrees with Eq.
(la) to within 5 per cent.

Numerical Results.—As obtained from Eq. (1a), X\,/Zea is plotted
in Fig. 5-2-2 as a function of d/a for the range 0 to 0.5 and for various
values of a/A. In Fig. 5:2-3 the inverse quantity Ba/Y o\, = Zea/X),
is given as a function of d/a in the range 0.5 to 1.

b. Asymmetrical Window.—Asymmetrical window formed by a zero
thickness obstacle with its edges parallel to the electric field (H-mode in
rectangular guide).

I: % —————i‘«lr Z, %;X 2z,
gl 2 :

Cross sectional view Top view Equivalent circuit
Fig. 5-2-4,

Equivalent-circuit Parameters.—At the terminal plane T

, md
a tan 5%

8a*5%Q)
[+ a* + (8" + 6a%)Q

a\’ a?+2821n 8 24132 ]I
+2<X) [1_2—aq1+a2) T1F &) (la)
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F1a. 5-2-5.—8usceptance of asymmetrical inductive window in rectangular guide.
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where

. wd wd 1
(X—Sln%) B—COS%I Q—t_l.

V- ()

Restrictions.—The equivalent cireuit is applicable in the wavelength
range a < X < 2a. Equation (1a) has been derived by the equivalent
static method employing the static aperture field for two lowest modes
incident and, in addition, higher-mode approximations similar to those
indicated in Sec. 5-2¢ for n = 4. Equation (la) is applicable in the
wavelength range a < A < 2a with an estimated error of about 1 per cent.
The asymptotic form Eq. (1) valid for the small-aperture range agrees
with Eq. (1a) to within 5 per cent if d/a < 0.3 and a/X < 0.8. Equation
(1e) is valid in the small-obstacle range; for d’/a < 0.2 and a/X < 0.8 it
agrees with Eq. (1a) to within 10 per cent.

Numerical Results.—As obtained from Eq. (la), Z.a/X\, is plotted
in Fig. 5:2-5 as a function of d/a in the range 0.1 to 0.7. Similarly in
Fig. 5-2-6 there is a plot of Zoa/X\, as a function of d’/a in the range 0
t0 0.5. In both figures a/\ is employed as a parameter.

c. Symmetrical Obstacle—A centered symmetrical obstacle of zero
thickness with its edges parallel to the electric field (Hi~-mode in rec-
tangular guide).

E 4
ke d »LgLL d T T
Cross sectional view Top view Equivalent circuit
FiG. 5:2-7.

Equivalent-circuit Parameters:

a {(1 + o®)F(8) — 2E(B)
) 2E(8) — o'F (8)

2 fa\ [2(2a — DE@B) — a(3a2 — DF(B) |?
+ 5 (X) [ 2E(8) — o (B) ] } (1a)
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X a 8 a 4 (a\’ a
A NGRS 16 S S
X wd a 2<1rd)4 d
nen ) QG fen o
where
_ S'nﬂ = S1rd'
a = §i 2al co '%

Restrictions.—The equivalent circuit is applicable in the wavelength
range 2a/3 < A < 2a. Equation (la) has been derived by the equivalent
static method employing the static obstacle current set up by an incident
lowest mode and using higher-mode approximations similar to those
indicated in Sec. 5-2a for n» = 3. Equation (la) is applicable in the
wavelength range 2¢/3 < N\ < 2a with an estimated error of a few per
cent for a < A < 2a. The asymptotic form Eq. (1b), valid in the small-
obstacle range, agrees with Eq. (la) to within 10 per cent provided
d'/a £ 0.15and a/x £ 1. Similarly Eq. (1¢), valid in the small-aperture
range, agrees with Eq. (la) to within 10 per cent for d/a < 0.25 and
a/A < 1.

Numerical Results.—As obtained from Eq. (1a), Ba/Y\, = Zya/XX\,
is plotted in Fig. 5-2-8 as a function of d’'/a with a/A as a parameter.

6-3. Capacitive Windows in Coaxial Guide. a. Disk on Inner Con-
ductor.—A window formed by a circular metallic disk of zero thickness on
the inner conductor of a coaxial line (principal mode in coaxial guide).

L i d O —0
/ bO l ’ l
¥ d
B .

2 2b ) Y T:B Y,
[
_____L %— O

1

L

T T
Cross sectional view Side view Equivalent circuit

F16. 5-3-1.

Equivalent-circuit Parameters.—At the terminal plane 7
44 cos*

[ wd
Bty g (e ) 4 B
0 . 1 —+—Asin4—
2bo

(Y (5 = 3sim2 Y cost T 4 A ] (1)
X sin’ 55,) €% gp, T Az
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B 2boA, 2bo) , 2(=d bo\’ 1(rd T
TN P‘“(‘)*é(—)”(x) [ -5 () ]+

bi<<1 (1b)
0
B 2bA [, (xwd'\* | 1{xd boz( ]
7T [2(27;)%(%)“2(0 2,) T4
‘Z—<<1 (1c)
0
whered = ¢ — b, d=b—a, by =¢—a,
RS -
2,
\/1‘<T)
2
m (¢
A1=’%c a |[b ~
a‘—l lnl—)
a o1 aaone () -voos ()]
Az= a a

_@773@_1{ ¢ _
“f\/lf(vO T3/ @) b}
Sl (Y
oy
1_

By
T™Y1 . . .
and x = o -1 = xo1 is the first nonvanishing root of

Jo(x)No (%) — No(x)Jo (%) = 0.

Restrictions.—The equivalent circuit is valid in the wavelength
range N > 2(c — a)/v: provided the fields are rotationally symmetrical.
The susceptance has been evaluated by means of a variational method
treating the first higher E-mode correctly and all higher modes by plane
parallel approximations. Equation (la) is estimated to be correct to
within a few per cent for ¢/a < 5 and for wavelengths not too close to
cuteff of the first higher mode. Equation (1b) is a small-aperture
approximation that agrees with Eq. (1a) to within 5 per cent in the range
d/by < 0.5 and 2bo/\ < 0.5. Equation (l¢) is a small-obstacle approxi-
mation and agrees with Eq. (la) to within 5 per cent in the range
d/bo > 0.5, 2bo/N < 0.4

Numerical Results.—For ¢/a = 1 the graph of B\/Y2b, as a function
of d/by with 2by/\ as a parameter may be obtained from Fig. 5-1-4 if the
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X, and b therein are replaced by the A/2 and b, of this section. For
c¢/a > 1, BN/Y2by may be obtained from its value for ¢/a =1 by
addition of the term A, and multiplication of the resulting sum by A,.
The wavelength-independent term A is plotted in Fig. 5-3-2 as a function
of d/by for several values of ¢/a. 1In Figs. 5:3-3, 5-3-4 graphs of A, as a
function of d/by with 2by/\ as a parameter are shown for ¢/a = 3 and 5;
Az = 0 for the case ¢/a = 1. The root x(c¢/a) may be obtained from
Table 2-:3 (note that the ¢ therein is the ¢/a of this section).

b. Disk on Outer Conductor.—A window formed by a metallic disk of
zero thickness on the outer conductor of a coaxial line (principal mode in
coaxial guide).

1_td’
0 : d
Y, B Y,
| i
[os e}
T T T
Cross sectional view Side view Equivalent circuit

Fra. 5-3-5.

Equivalent-circuil Parameters.—The equivalent-circuit parameters are
the same as in Eqgs. (1a) to (l¢) of Sec. 5-:3a except that now

d=5b—aq, d =c— b, by = ¢ — q,

r
2 |
In € E)—1
1 :? a y
1 bE_l 1 b
a na
) C a . [xb AN
L 1 —- JoOONo\ == ) — Nolx)Jo | =
A, = b c ¢ ¢
7\/1_@))21_& 1%
' YA §(xa/c)
.1 (?ﬁsin"d !
\/ 2bo\ \T 4 b
1‘(7)
and the root x =11i7;/c =%X01 is defined by

Jo()No (%l) — No(x)o (’%’) ~ 0.

Restrictions.—Same as in See. 5:3a.
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Numerical Resulls.—For ¢c/a = 1 the graph of BA/Y2b, as a function
of d/bo with 2be/\ as a parameter may be obtained from Fig. 5:1-4 if A,
and b therein are replaced by the A/2 and b of this section. Fore¢/a > 1,
B)\/Y¢2by may be obtained from its value for ¢/a = 1 by addition of
the term A, and multiplication of the resulting sum by 4;. The wave-
length-independent term A, is plotted in Fig. 5:3-6 as a function of
d/be for several values of ¢/a. In Figs. 5-3-7, 5-3-8 graphs of 4, as a
function of d/be with 2by/A as a parameter are shown for ¢/a = 3 and 5;
Aq = 0 for the case ¢c/a = 1. The root xo: may be obtained from Table
2-3 (note that the ¢ therein is the ¢/a of this section).

b-4. Circular and Elliptical Apertures in Rectangular Guide. a. Cen-
tered Circular Aperture—A centered circular aperture in a transverse
metallic plate of zero thickness (Hip-mode in rectangular guide).

%E IS D

= —

‘ T T

Cross sectional view Side view Equivalent circuit
F1a. 5-4-1.

Equivalent-circuit Parameters.—At the terminal plane T

B A, wh a\’

bt [24d Aw A (X> Az]’ (1a)
B N[ a1 3 ab

Yo @ [24d 7() ] “o g TKh (18)

where

’ 30—6tan—q+tan3f
VT 4d B2 (x) 9

y 2
(B>21 — 2cososin2g - (tang - 1>

@ 15 tan 9

2
_ (—1>" 8\
4~ ~ g5 a*’J ® 2 [ (E) ] ¢ <,

b
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N () |2(5)

a* ji(=) o

3
2b
N (x)
d << b
2% | =d ( 10 d b “S‘" m i (wlc»>
Az = a7 (x) | 120a 1= 375) T <a> & | b

—f

and

2
sin0=iy =\/n'~’—<m—b>;
aa a

.()_l Sinx—cosx
I =\

I
=3
3
Il

(omit n X 0 term),

)

"

2= z z (omit n = 0, m

n=0,12,1+4, - m=

I
gy
Iy

1 term).

Restrictions.—The equivalent circuit is valid in the wavelength
range 2a > A > 2a/3 provided the Hi;-mode is not propagating. The
circuit parameter B/Y, has been computed by a variational method
employing as an aperture field the static small-hole electric-field distribu-
tion. The error is estimated to lie within 10 per cent for d < 0.9,
provided X is not too close to cutoff of the next propagating mode. The
expressions (1b) are approximations to Eq. (la) in the small-aperture
range d < b. The restriction to zero thickness should be emphasized;
thickness effects are considered in Sec. 8-10.

Numerical Results.—The quantity B/Y, of Eq. (1a) has been plotted
as a function of d/a in Fig. 54-2 for various values of N/a and a/b.

b. Small Elliptical or Circular Aperture.—A small elliptical or circular
aperture in a transverse metallic plate of zero thickness (H,,-mode in
rectangular guide).
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F1a. 5-4-2.—Relative susceptance of centered circular aperture.
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£ Tk

ET 2 /
A

Cross sectional view Side view Equivalent circuit
Fig. 5-4-3.

Equivalent-circui! Parameters.—For an elliptical aperture

B N ab
Voo a <1m 1) 2)
where
M = (M, cos? ¢ + M, sin? ) sin? ”—;‘ (3)
and v
_dix €2
A{l = E *i /’T(E)—‘—T(E“)’ (4(1)
_dix 1
11[1~6%41‘i@_1 e K1, (4b)
(1,2
_dyfir e
Me = T3 B =0 = (e ()
dilym
A[z = T 1' e K 1, (51))

 (a (l’fr
€7 \/‘ B <d)
and F(e) and E(¢) are complete elliptic integrals of the first and second

kinds, respectively.
For the special case of a eircular aperture d, = d2 = d and

N S 2 WL
M= (5({ sin® (6)

Restrictions.—The equivalent circuit is valid in the wavelength
range 2a > N > a. The parameter B/Y, has been obtained by an
integral equation method employing the small-aperture assumptions:
the largest dimension of the aperture is small compared with X\/x, the
aperture is relatively far removed from the guide walls, and the wave-
length is not too close to cutoff of the second mode. In this approxi-
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mation B/Y, is independent of position along the direction of electric
field. The approximations (4b) and (b)) are asymptotic forms of Eqs.
(4a) and (5a) and are valid for small eccentricities e.

Numerical Results—The coefficients M and M ,, plotted as a func-
tion of dy/d,;, may be obtained from Fig. 5-4-4.

5-6. Elliptical and Circular Apertures in Circular Guide.—A small
elliptical or circular aperture in a transverse metallic piate of zero thick-
ness (H-mode in circular guide).

T

Cross sectional view Side view Equivalent circuit
Fia. 5-5-1.

Equivalent-circuit Parameters.—At the reference plane T for an ellip-
tical aperture of orientation ¢ = 0 or n/2 and angular positions 8 = 0,
/2, m, or 3r/2

B [ (2R)
Yo 4R

where

J (on')

2
M=M, [2]{(017") cosf cos(¢p — 0) — sind sin(¢ — 0)]

20 (2)
ek (ar) sinf cos(¢ — 0)]

_,_#“_
2’
\/1 (-
3.412R
and the coefficients M; and M, are defined in Eqs. (4) and (5) of Sec. 5-4b.

For a centered elliptical aperture, r = 0 and Eq. (2) reduces to

M = M, cos? ¢ + M, sin? ¢. 35

+ M, [2J{(ar) cosf sin(¢ — 8) + 2

alR = 1.841, A, =

For a circular aperture, d, = d» = d and Eq. (2) reduces to

M= i [2J1(ar) cos 6] + [zli?(:i) sin 0]2 } 4)
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Fi1a. 5-5-2.—Susceptance of a centered circular aperture in circular guide.
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F1a. 5-5-3.—Shunt susceptance of a circular aperture in a circular guide of 1§ in. diameter.

(Points, experimental; curves, theoretical.)




246 STRUCTURES WITH ZERO THICKNESS [SEc. 5-6

For a centered circular aperture, r = 0 and Eq. (2) reduces to

d3
M = 5 (5)

Restrictions.—The equivalent circuit is applicable in the wavelength
range 2.61R < A\ < 3.41R. The above-mentioned restrictions on ¢ and 6
serve to ensure that only a single Hy;-mode of the indicated polarization
can be propagated. The comments mentioned under Restrictions in
Sec. 5-4b also apply to this case except that B/Y, is not independent of
position along the direction of electric-field intensity.

Numerical Results.—The coefficients M, and M, are plotted as a
function of d,/d:; in Fig. 5-4-4. The relative susceptance B/Y,, as
obtained from Eqs. (1) and (5), is plotted vs. d/2R in Fig. 5-5-2 for the
special case of a centered circular aperture in the small aperture range.

Ezxperimental Results.—Measurements of B/Y, taken at A = 3.20 em
in a circular guide of }§ in. diameter are shown by the circled points in
Fig. 5-5-3. These rough data apply to centered apertures in a transverse
metallic plate of 4% in. thickness. For comparison the dotted curve
shows values of B/Y, obtained from Eq. (1) with the aperture diameter d
replaced by (d — 4% in.) to account approximately for the effect of plate
thickness. The solid curve is a corresponding plot of B/Y, vs. d as
obtained from Eq. (1) for the case of zero thickness. For plates of finite
thickness (see Sec. 5:16) the equivalent circuit should be represented by
a tee rather than by a simple shunt circuit at the terminal plane T';
for the 4% in. thick plate the relative series reactance of the tee varies
approximately linearly from 0 to about 0.05 as d varies from 2R to 0.4R.

5-6. Small Elliptical and Circular Apertures in Coaxial Guide.—A
small elliptical or circular aperture in a transverse metallic plate of zero
thickness (principal mode in coaxial guide).

di

H Y, -B Y
T T
T
2R,
2R,
Cross sectional view Side view Equivalent circuit

Fig6. 5-6-1,
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Equivalent-circuit Parameters.—At the reference plane T

R,
B _ Ar?ln R, .
7& - —M ’ ( )
where
M = M, cos? ¢ + M, sin? ¢. 2)

The coefficients M, and M, are given as a function of ds/d; in Eqgs. (4)
and (5) of Sec. 5:4b. For the special case of a circular aperture,
d: = d2 = d and Eq. (2) becomes
d3
=5 (3)
Restrictions.—The equivalent circuit is applicable as long as only the
principal mode can be propagated. Otherwise, comments are the same
as in Sec. 54b.
Numerical Results—The coefficients M; and M, are plotted as a
function of do/d; in Fig. 5-4-4.
b-7. Annular Window in Circular Guide.—An annular window in a
metallic plate of zero thickness (Hoi-mode in circular guide).

ﬁ— o— o

._l_ [s3 —0
T T T
Cross sectional view Side view Equivalent circuit
Fia. 5:7-1.

Equivalent-circuit Parameters.—At the terminal plane T

(383
N CAN Y "
Zo XN \2R 0.162 '
where
A
O
\/ L= (1.64R>
Restrictions.—The equivalent circuit is valid in the wavelength range
0.896R < A\ < 1.64R. It is to be noted that modes other than the Hy-

mode can be propagated in this range. The equivalent circuit describes
the junction effect for the Hy-mode only. Equation (1) is obtained by
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an integral equation method employing the small-aperture approxima-
tions and is applicable in the above wavelength range with an estimated
error of less than 10 per cent if d < 0.1R and 0.3R < r £ 0.8R. The
error, which is estimated by comparison of Eq. (1) with a more accurate
numerical variational expression, becomes smaller as 7 approaches 0.55R.

Numerical Results—In Fig. 5:7-2 the quantity X\,/Z,R is plotted as
a function of /R with d/R as a parameter.

5-8. Annular Obstacles in Circular Guide.—An annular metallic strip
of zero thickness (E,;-mode in circular guide).

i
[l ’
1 .
( d ! Y, jiB Y,
H q
: Q—L—o
———
2r T T T
2R
Cross sectional view Side view Equivalent circuit
Fig. 5-8-1.

Equivalent-circuit Parameters.—At the terminal plane 7'

2 T
B _r (7rd>2 J1(2.405 R>

R 0269 ' (1)

h<
o
>
™

where
A

I ERy
1= (Z.GIR)

Restrictions.—The equivalent circuit is valid in the wavelength range
1.14R < X < 2.61R. Equation (1) has been obtained by an integral
equation method employing small-obstacle approximations. It is to be
noted that modes other than the Es-mode can be propagated in this
range. The equivalent circuit describes the junction effect for the
Eo-mode only. Equation (1) is valid for strips of small width; the error
is estimated to be within 10 per cent if d < 0.10R and 0.3R £ r < 0.7R.

Numerical Resulls.—In Fig. 5-8-2 the quantity B\,/Y R is plotted as
a function of /R with d/R as a parameter.

A =

STRUCTURES WITH FINITE THICKNESS

5-9. Capacitive Obstacles of Finite Thickness. a. Window Formed
by Two Obstacles—Window formed by obstacles of small but finite
thickness with edges perpendicular to the electric field (Hi»-mode in
rectangular guide).
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Fia. 5-7-2.—Reactance of annular window in circular guide (Ho-mode).
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Cross sectional view Side view Equivalent circuit
Fig. 5-9-1.

Equivalent-circuit Parameters.—At the reference planes T'

B, B/ b, l

?0—70%-Etan)\—gy (1)
B b 2nl
YSZECSCTZ’ (2)
where
int ™
B _ |, <1rd' g) ral O
=2 il -4 ¥
Yo N 2b 2 bd 1+Acos4%

1/b\? L7\ . wd’
+1—6<>\—v> <1—3005 —%> sm“%y (3a)
By _b[(nd N 1 (nd N _wdl  3(0) (x) "
v nl\29) e\ 9) “2vata\n) \&) | (3b)

_ o L (1 ), 1
9= gy ¥y =~ toa ™ (? T) for 7 <1,
I Ee) — oF(a)

d~ E) — «F ()
1

Restrictions.—The equivalent circuit is valid in the wavelength
range b/A, < 1. The above equations have been obtained by the
equivalent static method in which the two lowest modes have been
treated correctly. Equation (2) is in error by less than 2 per cent.
Equation (3a) is in error by less than 5 per cent when d'/b < 0.5 and
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l/d < 0.5; for d'/b > 0.5 or I/d > 0.5 the results of Sec. 88 should be
employed. The approximation (3b) agrees with Eq. (3a) to within 5
per cent when d’/b < 0.5 and b/, < 0.4.

Numerical Results.—The quantity Bi\,/Y b may be obtained as a
function of d/b = 1 — d'/b by the addition of

sec <7-11f g>
2b d'l
21In '————‘I i’ - T m
sec 3%

to one-half the quantity B\,/Y b plotted in Fig. 5-1-4. The quantity ¢
plotted as a function of I/d’ may be obtained from Figs. 5:9-4 and 5-9-5.

b. Window Formed by One Obstacle.—Window formed by an obstacle
of small but finite thickness with edges perpendicular to the electric field
(H-mode in rectangular guide).

TT -iBy
i -
! ¢ sl
B 4 b . Y, jBa iBy Y,
/ i o__/u—_o
R —{ 1 | T T
Front view Side view Equivalent circuit

Fig. 5-9-2.

Equivalent-circuit Parameters.—Same as in” Sec. 59a except that
), is replaced by A,/2.

Restrictions.—Same as in Sec. 5-9a except that A\, is replaced by A,/2.

Numerical Results.—If N, in Fig. 5-1-4 is everywhere replaced by
),/2, there is obtained a plot of B\,/Y ¢2b as a function of d/b with 2b/},
as a parameter. The addition of

sec (Iii—,g>
2 b nd'l
2in ——’_'d_l ~ 3
sec 5 3

to one-half B\,/Y2b yields the quantity Bi\,/Y:2b. In Figs. 5:9-4 and
5.9-5, ¢ is plotted as a function of I/d’.

¢. Symmetrical Obstacle—A symmetrical obstacle of small but finite
thickness with edges perpendicular to the electric field (Hi--mode in
rectangular guide).
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Fig. 5:9-5.—Data for determination of equivalent circular diameters of rectangular posts.
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]l B,

~
~

]

3

Front View Side View Equivalent Circuit
Fia. 5-9-3.

Equivalent-circuit Parameters.—Same as in Sec. 5-9a.

Restrictions.—Same as in Sec. 5-Oa.

Numerical Results.—Same as in Sec. 5-9a.

6-10. Inductive Obstacles of Finite Thickness. (a) Symmetrical
Window.—A symmetrical window formed by obstacles of elliptical or

rectangular cross section with edges parallel to the electric field (H ,-mode
in rectangular guide).

T_@._i__ T%_L_/ =JX, -jX,
d’;z 472

1 ¥ o 4{ {7 JI } a
a or }'

'
Ee '
l

|
|
¢ 4-11: Zo Xa Zy
.‘ %}2 ; _d_'}z [ — -0
T T
T T
Top View Top View Equivalent Circuit
Fic. 5:10-1.
Equivalent-circuit Parameters.—At the terminal plane T
X. 2 ( a \* xD’
Z_E(m)’ T«l’ 1)
Xb _ a 7rD1 ‘ T
Z—O_S_)\:(a)’ T<<1. (2)

For a window formed by obstacles of elliptical cross section the equivalent
circular diameters D’ and D, are

D= PR, 3)
AT
D, = \/M#l )

For a window formed by obstacles of rectangular cross section the equiv-
alent circular diameter D’ is
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;o dl al

D=7 5y =« (5a)
, I, 4xd’

D z7§<l+ﬁln:—l), (%«1, (5b)

where « is determined by
1 _ E(a) — «"Flo) = ~ ,
4 = —E'((I—,)—T(al)] a = l—« y € = 2718,

the equivalent circular diameter D, is

D * ata’ l \4/11201'2 d’

= 7 NN = 2 ’ 6

NS B —aT@) V3 B - @) Y
e l

where a is determined by

R 0 Np—
¢~ B — «Fla) b

The functions F(a) and E(a) are the complete elliptic integrals of the
first and second kind, respectively.

Restrictions.—The equivalent circuit is valid in the wavelength range
2a > N > 2a/3. The circuit parameters have been evaluated by an inte-
gral-equation method employing small-obstacle approximations. These
evaluations have been presented only in the static approximation
#D’/\ and xD;/\ < 1; the wavelength correction to Eq. (1) is of the
same order as that in Eq. (1a) of Sec. 5-2a (note that d’/2 of this section
is the d’ of Sec. 5-2a). The equivalent circular diameters D’ and D,
have been evaluated by conformal mapping methods. In the range D’,
D; < 0.2¢ and a < X\ Egs. (1) and (2) are estimated to be in error by less
than 10 per cent.

Numerical Results.—The equivalent circular diameters for obstacles of
rectangular cross section may be obtained from the curves of Figs. 5-:9-4
and 5:9-5. The relation between /2 D’/d’ and I/d’ given in Eq. (5a) is
identical with the g vs. I/d’ relation plotted in Fig. 5-9-4. The D,/l vs.
d’/1 relation given in Eq. (6a) may be obtained from the e, o, g vs. I/d’
curves of Figs. 5:9-4 and 5-9-5 provided the I/d’ therein is replaced by
a'/l.

b. Asymmetrical Window.—An asymmetrical window formed by an
obstacle of elliptical or rectangular cross section with edges parallel to the
electric field (Hp-mode in rectangular guide).
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———— =jX =X
| | — =
Ee a | or a ! 2 Xa Z,
1 0
f Ty
dl/2 d’/2 o— -0
- T T
T T
Top View Top View Equivalent Circuit

Fia. 5:10-2.

Equivalent-circuit Parameters.—At the terminal plane T

X 4fal =D’
Z—O—)\—ﬂ(_’—r—D—;)r T<<1, (7)
Xb _ a 7rD1 2 1rD1
Z—o_m(—a_), —)\—<<1 (8)

For obstacles of elliptical or rectangular cross section the equivalent
circular diameters D’ and D, are given in Eqs. (3) to (6).

Restrictions.—The equivalent circuit is valid in the wavelength range
a < A < 2a. The circuit parameters have been evaluated by an integral-
equation method subject to small-obstacle approximations. These
evaluations are given in Eqgs. (7) and (8) only in the static approximation
xD’/\, #D1/A K 1; the wavelength correction to Eq. (7) is of the same
order as that in Eq. (1a) of Sec. 5:2b (note that the d’/2 of this section is
the d’ of Sec. 5-2b). For D/, D, < 0.2¢ and a < A Eqgs. (7) and (8) are
estimated to be in error by less than 10 per cent.

Numerical Results.—Same as in Sec. 5:10a.

6-11. Solid Inductive Post in Rectangular Guide. a. Off-centered
Post.—A solid metallic obstacle of circular cross section with axis parallel
to the electric field (H,-mode in rectangular guide).

~iX, =X,
: o—¢ o
T - Ing!/ ?
E / T a Zo an Zo
2 i o -
r T T
Cross Sectional View Top View Equivalent Circuit
Fia. 5-11-1,

Equivalent-circuit Parameters.—At the reference plane T

X. X, a T rdY (rd)’( T )2]
Z_Q_Z—o—ﬁ:csczf[so_(ﬁ) bt —271' SoCOt-E- S1 y (1)
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Xy, afnd L , ML

’Z—o = )\—g <F) si1n 7) (2)
where
So=1n(ﬁsinr—x>—23inzﬂ+2 sin? % —1:—%,

wd a a a \/ . (2a>2
nt — (22
n=2 A
S1=lcot7—rc—v—sin27rx+E:Sinznwz n _1
2 a a a / (2(1)2
n? — | —

Restrictions.—The equivalent circuit is applicable in the wavelength
range a < A < 2a. The circuit parameters indicated in Egs. (1) and (2)
have been obtained by a variational method employing a constant, a
cosine, and a sine term in the expression for the obstacle current. These
equations represent the first two terms of an expansion in powers of
(rd/a)?. Although it is difficult to state the limits of accuracy, the
results are believed to be reliable to within a few per cent for d/a < 0.10
and 0.8 > z/a > 0.2. A more precise value for the case z/a = 0.5 is
given in Sec. 5-11b.

Numerical Resulls—Numerical values of X./Z, as obtained from
Eqgs. (1) and (2), are given as a function of d/a with z/a as a parameter in
the graphs of Figs. 5:11-2, 5-11-3, and 5-11-4. These curves refer to the
wavelengths A/a = 1.4, 1.2, and 1.1, respectively. Values of the param-
eter Xy\,/2Z0a may be obtained as a function of d/a from the curve in
Fig. 5-11-5 on multiplication of the ordinates in the latter by sin? (wz/a).

Ezperimental Results—Measurements of the circuit paramefers
were performed at A = 3.20 ¢cm in a rectangular guide of dimensions
a = 0.90in. and b = 0.40 in. on posts for which d/a = 0.04. These data
agree to within an experimental accuracy of a few per cent with the above
theory in the range 0.2 < z/a < 0.8.

b. Centered Post.—A symmetrically located post of circular cross
section aligned parallel to the eclectric field (Hi,-mode in rectangular
guide).

Equivalent-circuit Paramcters—At the reference plane T and for
x = a/2 (¢f. Fig. 5:11-1)

X. X»  ale (" _5(xd\' _ m"( e MY
5 () 36 2 (@) (o))

3)
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116G, 5-11-2.—Shunt reactance of inductive post in rectangulur guide (A\/a = 1.4).
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F1e. 5:11-4.—Shunt reactance of inductive post in rectangular guide (A\/a = 1.1),
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(w(l)2
Xy a o
= ’ (4IL)
Z A :
A )
(ml
X, a a

5 A 41
Zo ~ N[ (Y, (4)
24 \a
where
So_l 4—a’~2+2 . 1 ‘—‘1')
n

40 5 11 2 2 {a\}
S I R ( )E )“”*z@]'
n=3,5, *

Restrictions.—The equivalent circuit is valid in the wavelength range
2a > X > 2a/3. Equations (3) and (4) have been evaluated by a
variational method employing one stage of approximation beyond the
results presented in Sec. 5:11a. These equations are accurate to within
a few per cent for d/a < 0.20. Equation (4b) differs from Fqg. (4a) by
less than 3 per cent in the wavelength range 2a > N\ > aand ford/a < 0.2.

Numerical Results.—Curves of X \,/Z2a vs. d/a are plotted in Fig.
5-11-5 for several values of Ma. A graph of Xy\,/Z¢2a vs. d/a, as
obtained from Eq. (4b), is also plotted in Fig. 5:11-5.

Experimental Results.—Measurements of the circuit parameters were
carried out at guide wavelengths of 1.76 and 2.00 in. in a rectangular
guide of dimensions ¢ = 0.90 in. and & = 0.40 in. These data agree
with the theoretical values for the range d/e¢ < 0.15 to within an experi-
mental accuracy of a few per cent.

c. Noncircular Posts.—A solid post of elliptical or rectangular cross
section with axis parallel to the electric field (H;-mode in rectangular

T i) ~iX,
B I N
d’ X, V4
a N\ or a d - - Z, +1Xa 0

A o f

{ X | ¥ o— -0
| 1 T T
T T :

Top view Top view Equivalent circuit

Fra. 5-11-6.
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Equivalent-circuit Parameters.—At the reference plane T

&—&—i Szﬂ-x ln 4(1 7r_z — 2 er
Zo 2Z, 2, %% % 7do ¥ g sin® -7

o T 1 1
+ 2 2 sin® —= l——(za)z — EJ]: (5)
n? —

n=2 _)\'
Xy _ wd\ .,z
7 )\v ) sin® — (6)
For a post of elliptical cross section
a=21Y 4 - v @)
For a post of rectangular cross section
_d 1 d”’ 1
dy =5 ———————— = 5 T’ 8
S 2B — P 2 E@) = aF@) (8
d/ / dl dl/
do [1 + = (47re 7 )], 7 <1, (8b)
d, = d_” ___ _a.l_
T VR EW) = o (o (9a)
dll ’ 47,_ d/’ dl
d = '\/§ [1 + o ( d/)]y a «1, (9b)

where a is given by
! ! !
" _Ela) = oFl) T Ta =278,
d E(a) — o' F(a)
and F(a) and E(a) are complete elliptic integrals of the first and second
kinds, respectively.

Restrictions.—The equivalent circuit is valid in the wavelength
range 2a > A > a. The circuit parameters X, and X, have been eval-
uated by a variational method employing the small-obstacle approxi-
mations dy < ), as is evident by comparison with the results of Sec. 5-11a.
The “equivalent circular diameters’’ do and d, have been computed in the
static approximation by conformal mapping methods. The above
results are estimated to be correct to within a few per cent in the range
do, di < 0.10a and 0.7 > z/a > 0.3.

Numerical Results—In the range of applicability of Fgs. (5) to (9),
numerical values of X,/Z, and X;/Z, may be obtained from the curves of
Figs. 511-2 to 5'11-5 provided the equivalent diameter do or d. is
employed in place of the circular diameter d. The equivalent circular
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diameter do of Eq. (8a) for a rectangular post is plotted in Fig. 5:11-7
as a function of the ratio d”’/d’. Since the variation of 2d/d’ vs. d"’/d’
is identical with that of 2d,/d" vs. d’/d”, a plot of the former in the
range 0 < d"’/d’ < 1 yields d, for the entire range of d’’/d’. The curve of
V2d,/d" vs. d'/d”, as given by Eq. (9a), is identically the curve of ¢
vs. l/d’ plotted in Figs. 5:9-4 and 5-9-5.

6-12. Dielectric Posts in Rectangular Guide.—A cylindrical dielectric
obstacle of circular cross section aligned parallel to the electric field
(H1ie-mode in rectangular guide).

ET . o kd |

—— o —+ T

Cross sectional view Top view Equivalent circuit
Fig. 5:12-1.

Equivalent-circuit Parameters.—For an obstacle with a real dielectric
constant ¢ = ¢/e

&_ﬁ__a_c 27”[‘]0(6) 1 So+a_2],
Z, 2Z, 2, Jola) BJo(a)1(8) — aJo(8)J 1(a) 4
(la)
Xa Xy @ T 2 _ 1 ¢ —3
Z—O‘ - 2—Zo =~ m csc? — [(_E’ — 1)(12 0 vy _"—‘1]’ (1b)
2_a (7r—d)2 sin? 7%
& = )\7 a a H (2(1)
Zo L) I .,

Ji(a)  ado(a)J1(B) — BJo(B)J1(a)

2(_: ~ S‘i () (¢ — 1)( ) sin? =% (1 + € 2a2), (2b)

I

where
o = I;—i) ﬂ = e’ -1r—;l:
=In 4¥‘-sin "—I) -2 sm2 + 2 sin? 7% v 1]
wd a a 2a\: n
2

For an obstacle with a complex dielectric constant ¢ — je'’ = /e,
the above formulas are still valid provided ¢, X./Z,, and X,/Z, are
replaced by ¢ — je¢'’, j(Z./Z,), and —j(Zs/Zo), respectively. The com-
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plex impedances Z, and Z;, represent the values of the shunt and series
arms of the equivalent circuit of Fig. 5-12-1.

It is to be noted that resonant effects occur for large values of ¢ with
attendant changes in sign of the circuit elements. In this connection
the representation of Fig. 3-14 is advantageous for investigating condi-
tions under which complete transmission occurs.

Restrictions.—The equivalent circuit is applicable in the wavelength
range 2a > N > a, and for the centered cylinder (z = a/2) in the wider
range 2a > A > 2a/3. The approximations and method employed in
the derivations of Egs. (1) and (2) are similar to those involved in Sec.
5-11a, though not so accurate for the off-centered posts. Equations (1a)
and (2a) are estimated to be in error by only a few per cent in the range
d/a < 0.15 and 0.2 < z/a < 0.8 provided also that neither X,/Z, nor
X,/ Z, are too close to resonance. In the range /¢ < 4 Egs. (1b) and
(2b) agree with Egs. (1a) and (2a), respectively, to within a few per cent.
For relatively small diameters, say d/a < 0.1, or values of ¢ close to
unity (¢ « 1), the equivalent circuit reduces to a simple shunt element.

Numerical Results.—In view of the large number of parameters
(d/a,x/a,N/a,€,€’) involved in the general result, numerical computations
have been made only for a centered post (x/a = 0.5) with real dielectric
constant (¢ = 0) and for a wavelength A\/a = 1.4. The former is not a
serious restriction, for the essential dependence upon z/a is contained in
the multiplicative factors in Eqs. (1) and (2). Tables of X,/Z,and X,/Z,
vs. V€ are presented below for several values of d/a.

| dja = 0.05 \( dja = 0.10 { dja = 0.15
Vel x| x| ox X X, x,
Z, ! Z, 7 Z, Z, Z,
2 | 129 | 0000059 3.12 0.00093 1.39 0.0049
3 $57 1 0.000158 1.03 000262 0.443 0.0145
+ 2 25 000030 0.438 0.0053 0.184 0.0323
5 125 000049 0.187 0 0092 0.085 0.068
G | 0731 | 0.00073 0.057 0.0153 0,067 0 16*
7 0.422 | 000104 | —0.028 0.0249 0.5 1.0%
8 0.224 | 0.00141 | —0.063 0.042 —0.3* —0.41%
9 0.080 | 0.00186 | —0.083 0.078 —0.24 ~0.21
10 | —0.0028 | 000242 | —0.05* 0.21* ~0.28 —0.15
1wl —0078 | 000312 | —06* | —o087* —0.61 ~0.119
12 | —0132 | 0.0040 —0.3* | —0.17* +0.230 | —0.100
13 1 —0a174 | 0.0051 —0.28% | —0.11* 10.006 | —0.082
14 | —0.207 | 00065 —0.29 | —0.079 ~0.040 | —0.061
15 | —0.23¢ | 0.0083 —0.3¢ | —0.066 ~0.048 | —0.021

The starred values of Xs/Zg, as computed from Egs. (la) and (2a), correspond to values of Xu/Zo
near antiresonance and are of questionable aceuracy. The first antiresonance in the series reactance Xs
oceurs for a diclectric constant ¢ = (3A/4d)2, whercas that for the shunt reactance occurs at
¢ o~ (BMAd)
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6-13. Capacitive Post in Rectangular Guide.—A metallic obstacle
of circular cross section with axis perpendicular to the electric field
(Hp-mode in rectangular guide).

> » D Yo iBy=R J-jB., Y
| Gz l j_@f{ i T

Cross sectional view Side view Equivalent circuit
Frg. 5-13-1.

Equivalent-circuit Parameters.—At the reference plane T

%= (wD)H, (1a)
IYi‘;z (’”D)2 <<1 (1b)
T TCo P
%%@—( ) —<<1 (2b)

where

( bcsc"ry >
1 {=D\* I
A 1+§(T,) n—p— t3
2
+(7rD cos? —2 mry ——1 —l y
Ny b T 20N\ m
m? — [ =
mel ()\g)
1{=D\'[11 b Ty 1 (=DY’ my 1
_1+§<T,,> [I_IH(T_DCSCF ti\w) \&° % 3

@) S )

m=1

S
|

Restrictions.—The equivalent circuit is valid in the wavelength range
2b/%; < 1. Equations (1a) and (2a) have been derived by the variational
method; the angular current distribution on the obstacle was assumed to
be the sum of an even constant function and an odd sine function.
These equations are estimated to be in error by a few per cent in the
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range D/b < 0.1 and 0.2 < y/b < 0.8. For y/b = 0.5 approximations
(1b) and (2b) agree with Egs. (1a) and (2a) to within 10 per cent for
D/b < 0.3 and 20/7;, < 0.4. The variation of the circuit parameters
with y/b is of the order of a few per cent.

Numerical Results.—Figure 5-13-2 contains a plot of B.\,/Y:2b of Eq.
(1a) as a function of D/b with 2b/\, as a parameter. In Fig. 5'13-3
YA /B2b of Eq. (2a) is plotted vs. D/b with 2b/\, as a parameter.
Both curves apply to the symmetrical case y/b = 0.5.

5-14. Post of Variable Height in Rectangular Guide.—A centered
metallic cylindrical post of variable height with axis parallel to the
dominant-mode electric field (Hi,-mode in rectangular guide).

‘4———0-—————>W
_ih

i

1
i

T T

Cross - Sectional View Top View
Fig. 5-14-1.

Equivalent Circuit

Equivalent-circuit Parameters. Ezxzperimental—The equivalent-cireuit
parameters at the terminal plane 7 have been measured in rectangular
guide of dimensions ¢ = 0.90 in. and b = 0.40 in. The measured data
are tabulated below as a function of 2/b for a number of post diameters d
and wavelengths \.  For posts with a flat base:

d = #in, A = 3.4 em, A, = 2.000 in.
h/b (in.) 0.249 0.497 0.746) 0.871 0.921] 0.934 | 0.993 | 1.000
X/ Zo 0.005 0.010 0.014 0.017 0.018 0.018 | 0.020 | 0.020
Xo/Z, —6.481| —1.015| —0.894] —0.035 +0.016/ 0.031 | 0.151 | 0.241
d = % in, X = 32cm, )\, = 1.763 in.
R/b (in.) 0.254 0.505 0.756 0.829 0.943 | 0.961 1.000
Xv/Zy 0.006 0.011 0.017 0.019 0.021 | 0.022 0.023
Xa/Zo —6.204 | —0.906 | —0.122 | —0.028 | +0.083 | 0.112 0.277
d = % in, X =3.0cm, \, = 1.561 in.
h/b (in.) 0.246) 0.504| 0.629) 0.755 0.784| 0.845| 0.898 | 1.000
Xo/Z, 0.005, 0.013] 0.016] 0.0190 0.019] 0.021] 0.022 | 0.025
Xa/Z, —6.384) —0.763 —0.277 —0.053‘ —0.017] +0.047| 0.088 | 0.341
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d = §in, A = 3.4 ¢m, \, = 2.001 in.
h/b (in.) 0.258 0.507 0.758 0.882 0.970 1.000
Xo/Z, 0.016 0.035 0.054 0.065 0.073 0.076
Xo/Zs —3.179 —0.606 —0.147 —0.052 +0.028 0.107
d=3%in, X =32cm, \, = 1.764 in.
h/b (in.) 0.251 0.501 0.759 0.834 0.882 0.965 1.000
Xo/Z, 0.017 0.038 0.061 0.068 0.073 0.081 0.085
Xa/Z,y —3.37 —0.591 | —0.129 | —0.058 | —0.020 | 4+0.040 0.126
d = §in, A = 3.0 cm, A\, = 1.561 in.
h/b (in.) 0.240 0.488 0.745 0.818 0.923 1.000
Xo/Z, 0.019 0.044 0.069 0.077 0.086 0.098
X./Z, —3.333 —0.596 —0.109 —0.050 +0.027 0.147
d =%in, A = 3.4 cm, \, = 2.000 in,
h/b (in.) 0.252 0.499 0.760 0.925 1.000
Xv/Z, 0.047 0.101 0.174 0.227 0.256
Xa/Zo —1.775 —0.468 —0.166 —0.053 +0.026
d=1in, ) =32em, )\ = 1.761 in.
h/b (in.) 0.262 0.505 0.755 0.880 0.924 1.000
Xi/Z, 0.052 0.111 0.191 0.240 0.267 0.291
Xa/Zo -1.717 —0.477 —0.182 —0.088 —0.038 +0.033
d = }in, N = 3.0 cm, A\, = 1.561 in.
h/b (in.) 0.250 0.502 0.750 0.880 0.940 1.000
X/Z, 0.056 0.121 0.211 0.270 0.300 0.335
X./Z, —1.859 —0.494 —-0.179 —0.085 —0.040 +0.023
For a post with a hemispherical base of diameter d:
d =1%in, X\ =34cm, ) = 1999 in.
h/b (in.) 0.248 0.477 0.751 0.950 0.988 1.000
Xo/Z, 0.033 0.083 0.151 0.214 0.304 0.409
X./Z, —3.373 —0.778 —0.241 —0.079 +0.037 0.118
d=1%in, X =32cm, A\, = 1.762 in.
h/b (in.) 0.252 0.540 0.735 0.925 1.000
Xv/Zo 0.036 0.105 0.162 0.228 0.262
X./Z, —3.268 -0.575 —0.263 —0.098 +0.037
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d =1%in, A =30cm, \, = 1.564 in.

h/b (in.) 0.250 0.504 0.743 0.874 1.000
Xu/Z, 0.039 0.107 0.187 0.240 0.304
Xa/Zy —3.208 —0.726 —0.272 —0.146 +0.045

The resonant effects exhibited by the shunt reactance X, are to be
noted.

5-16. Spherical Dent in Rectangular Guide.—A centered spherical
dent in the broad face of a rectangular guide (H,,-mode in rectangular
guide).

nmm
|
|
| Xy Xy
a |
- : @I* D—DID—v
A | T
Retr? h H f \
] . ! Zy -jXa Z,
[
| ! | I
T T T pd
Cross Sectional View Top View Equivalent Circuit

Fig. 5-15-1.

Equivalent-circuit Parameters. Experimental—A spherical dent of
variable height h was formed by pressure of a $-in. steel ball on the broad
face of a rectangular guide with dimensions a = 0.90 in. and b = 0.40 in.
(0.050-in. wall). The measured circuit parameters X./Z, and X,/Z,
at the terminal plane T are shown in Fig. 5:15-2 as a function of %/b at
the wavelengths N\ = 3.4 cm (A, = 2.006in.), A = 3.2cm (A, = 1.769in.),
and N = 3.0 em (A, = 1.564 in.). These data are questionable at the
larger values of h/b because of the deformation of the guide walls.

6-16. Circular Obstacle of Finite Thickness in Circular Guide.—A
centered circular aperture in a plate of finite thickness transverse to the
axis of a circular guide (H,;-mode in circular guide).

A -iX, -jXy
2R 1M
: ZO JXq Zo
EE% o ——C
T 7T T T
Cross Sectional Longitudinal View Equivalent Circuit

View
Fia. 6-16-1.
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F1a, 5:-15-2.—Measured shunt and series reactance of a spherical dent in the broad face of a
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Equivalent Cirewit Parameters.  Experimental—The circuit param-
eters Z,/ X, and X/ Zomeasured at A = 3.20cem (A, = 2.026 in.) as a func-
tion of plate thickness for a %-in. aperture in a circular guide of 1% in.
diameter are shown in Fig. 5-16-2, The data, which are rough, refer
to the outside terminal planes 7. A plot of Z,/X, as a function of d for
t = 4% in. is shown in Fig. 5-5-3.

0 0.1 0.2 0.3 0.4 0.5 0.6
t (in)
T16. 5-16-2.—Measured circuit parameters of circular aperture in circular guide.
5-17. Resonant Ring in Circular Guide.—A thin wire of elliptical,
circular, or rectangular cross section in the form of a circular ring con-
centric with the axis of a circular guide (H,;-mode in circular waveguide).

-1X, - J‘Xh
Iz e
, 1y
d VII/A
or
&2 L
| 1
! -
T T
Cross sectional view Side view Equivalent circuit

I'1a. 5:17-1.
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Equivalent-circuit Parameters.—At the reference plane 7' for the case
of a ring with mean radius r formed with circular wire of radius ro

X, 1R x — 1] Julx) 2{[<>\ : ] 8r
Z, ——é)‘ﬂTTl:J/ X{"‘)1 2nr ln_ 4 ()
s (X

R

where
' X{T
A= (Y _xu . (—R— + 8
- (27r1‘) R X7 —1 Ja(x1) i 3
" Ky(e) [1;( )] 1;’( 1) "
, E) Il
+2R/0 (@ ( ) T T | %

_2,2 I U N ["' ("R)]}

R T 2 X:l :: —_ 1 JI(Xn)

L)X’i - (&) ]x
)]

2 (Z)%R) [ J(TXI)Z)] ’

Jl(Xﬂ) = 0) J{(X:A) = 0! )‘ﬂ =

|
o

and
A

V(o)

The Bessel functions J,(z), Ki(z), I(z) are defined in the glossary; the
prime superscripts indicate a first or second derivative.

For a wire of elliptical cross section the equivalent circular radius rq
is given by

)

IAl 1
9r, = ¥4, 3)
2
and for a wire of rectangular cross section (cf. Sec. 5-11c)
o=t 1 @)

2 E(a) — a'F(a)

2r ~d—'[ + dd, In (41re j’,) . -], %7«1
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F1a. 5-17-2,—Shunt reactance of resonant ring in circular guide.

Restrictions.—The equivalent circuit is applicable in the wavelength
range 1.84 < (2xR/N\) < 3.83. The circuit parameters have been
evaluated by an integral equation method and are restricted to wires of
small cross section, ro/R < 0.2, and to rings having radii within the
range 0.2 < r/R < 0.8. The equivalent circular radii r, have been
computed by conformal mapping methods and are likewise subject to the
aforementioned restrictions. No estimate of accuracy is available within
the above range.
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F1a. 5:17-3.—Shunt reactance of resonant rings in circular guide.

Numerical Results—The relative shunt reactance X./Z, is plotted
against 2rr/N in Figs. 5:17-2 to 4 for several values of the parameters
2rR/\ and ro/R. The equivalent circular diameters dy = 2r for wires
of rectangular cross section may be obtained as a function of d”//d’ from
the graph of Fig. 5-11-7.

Experimental Results—Reactance measurements were performed at
A = 3.20 cm on circular rings formed with wire of cross-sectional dimen-
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Fi1a. 5:17-4.—Shunt reactance of resonant ring in circular guide.

sions 0.040 by 0.040 in. The measured data, corresponding to eircular
guides for which 2xR/N = 2.32 and 2.95, are indicated by the circled
points in Figs. 5:17-3 and 5-17-4, respectively. Additional measurements
on wires of circular cross section are indicated by the circled points in
Fig. 5:17-2; these data were taken in circular guide for which 27E/x = 2.19
at a wavelength of approximately 10 em.
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GRATINGS AND ARRAYS IN FREE SPACE

5-18. Capacitive Strips.—An infinitely extended plane grating
formed by metallic strips of zero thickness with edges parallel to the
magnetic field (plane wave in free space incident at angle 6).

S,
1 e Tl
H /| g
‘o
. _\;’ 0 :'" \[cos 8 N cos 6
/ T T

Front view Top view Equivalent circuit
Fig. 5-18-1.

Egquivalent-circuit Parameters.—At the reference plane T
B _4acos 8

In esc ‘ﬁi
Y, A

2a

1 (1 — g5)? [(1 - '%2) (As + AD) + 4ﬂ2A+A_]
2 3
(1 - %;) + £ (1 + %2 - %) (Ar + AL) +2p°4, 4.

B _4acosbf 22 1 ., .o (@Y ] @ a
?o—v X [:ln;a+§(3 2 cos 0) (3\-) ]7 a‘<<1, "<<1, (1b)

+

s (1(1)

A
where
1
AL = 5 02—1,
a . a cos
\/liTmnO—( Y )
B=sin;—z-

Restrictions.—The equivalent circuit is valid for wavelengths and
angles of incidence 6 in the range a(l + sin 6)/A < 1. The quantity
B/Y, has been computed by an integral equation method in which the
first two diffraction modes are correctly treated to order 2. Equation
(1la) is estimated to be in error by less than 10 per cent for the range of
values plotted in the accompanying figure. For the case § = 0, a more
accurate expression for B/Y, is given by Eq. (2a) of Sec. 5:1a provided
b therein is replaced by a and A, by A/cos 8. This latter result, valid for
all apertures d, indicates that at least for small # Eq. (1a) may be justifiably
employed for values of d/a larger than those plotted. Equation (1) is
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F1g. 5-18-2.—Shunt susceptance of capacitive strip grating.
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an approximation for small apertures and agrees with Eq. (1a) to within
10 per cent in the range d/a < 0.2, a/x» < 0.5, and 6 < 0.5.

Numerical Resulls—The quantity BA/4Y.a cos 8§ of Eq. (la) is
plotted in Figs. 5:18-2, 5-18-3, and 5-18-4 as a function of d/a in the range
d/a < 0.2 for various values of 6 (in radians) and for a/x = 0, 0.5, 0.8,
and 0.9.

5-19. Inductive Strips.—An infinitely extended plane grating formed
by metallic strips of zero thickness with edges parallel to the electric field
(plane wave in free space incident at angle 6).

r iine DU e

—_— — }
7;- X
E s 0
Ao \/cos 6 N cos 8
T T
Front view Top view Equivalent circuit
Figc. 5-19-1.

Equavalent-circuit Parameters.—At the terminal plane T’

X _acosé In es wd’
7Y ncse 5o
62
1 (1 —87* [(1 - Z) (Ay + 40 + 462A+A*]
+5 %, (la)
2B gy BB .
L= )+8(l+5 —35) e+ 40 +28°4,4
X a cos 8§ 2a 1 a\’ d’ a
7o~ [lnwd,+§(3~2cos20)<x>]; E«l’ X«l’ (10)
where
Ay = ! = — 1,
2a sin 0 a cos
\/1 " ( ) )
. wd’
B8 = sin %

Restrictions.—The equivalent circuit is valid for wavelengths and
angles of incidence in the range a(l 4+ sin 8)/A < 1. An integral
equation method in which the first two diffraction modes are treated
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accurately to order 82 has been employed to evaluate X/Zo,. Iquation
(1a) is estimated to be in error by less than 10 per cent for the range of
values plotted below. For the case 8 = 0, a more accurate expression
for X/Zy is B/AY, obtained from Eq. (2a) of Sec. 5:1a with b therein
replaced by a, d by &', and X\, by N/cos 8. This latter result, valid for the
entire range of strip widths d’, indicates that at least for small 8 Eq. (la)
may be justifiably used for values of d'/a in excess of those plotted.
Equation (1b) agrees with Eq. (la) to within 10 per cent in the range
d'/a <02 a/x < 0.5, and § < 0.5,

Numerical Results.—The term X\/Zoa cos § of Eq. (la) may be
obtained as a function of d'/a from Figs. 5:18-2, 5:18-3, and 5-18-4,
provided the replacements X\/Zya cos 6 for BA/4Y qa cos 8 and d’ for d are
made. The angle 6 is given in radians. The large values of reactance
in the vicinity of a = N is indicative of almost perfect transmission
through the grating in this range.

5-20. Capacitive Posts.—An infinitely extended grating formed by
metallic obstacles of circular or rectangular cross section with axes
parallel to the magnetic field (plane wave in free space incident normally).

iB,
*-‘ b I‘ b o) Yo
1 o
JBa, jBa
H |
? A A
T
Front view Top view Equivalent circuit
Fia. 5-20-1.

Equivalent-circuit Parameters—TFor obstacles of circular cross section
the circuit parameters are the same as in Sec. 5-13 with )\, therein replaced
by A\, and y/b = 0.5. The results of Sec. 5-9¢ can be employed for the
case of rectangular obstacles provided A, therein is likewise replaced by A.

Restrictions.—Same as in Secs. 5-13 and 5-9c.

Numerical Results—The variation of BA/Y 20 and Y\/B;2b with
D/b and 2b/\ is indicated in Figs. 5-13-2 and 5-13-3 provided A, therein is
replaced by A. The results for rectangular obstacles may be obtained
from Sec. 5-9c.

5-21. Inductive Posts.—An infinitely extended grating formed by
small metallic obstacles of elliptical, circular, or rectangular cross section
with their axes parallel to the electric field (plane wave in free space
incident at an angle 6).
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d' ‘ij _ij
J “‘jer:ﬁ}-e—r & %,
E o v
ad
]_.a*{ ——‘—:‘E_?—E—T N/cos @ N cos6
é Jo T T
Front view Top view Equivalent circuit
Fig. 5-21-1.

Equivaleni-circuit Parameters.—At the terminal plane T

X. acos@ n %
Zo A 21!'1'0

0

L1 1 it
2 \/ . 2ma (a cos 0)2 Im| |} (1)
m2 4+ ~ sin 6 —

m=— «

m#=0

X. acosf a . a\’ a

A A
Xy _ acos 82\
-Z—o- = X ( P > ’ (2&)
where, if d = (d' + d'")/2,
2r, = d, 2ry = \dd"’ for elliptical cross section,
2ry = d, 2ry =d for circular cross section,

’ 7/ &4 7
2ry = %fo (%T), 2r; = —\7§ fi (%;) for rectangular cross section.

The functions f, and f; are defined in Eqgs. (8) and (9) of Sec. 5-11¢ (with
do = 219, d; = 2r1).

Restrictions.—The equivalent circuit is valid for wavelengths and
incident angles in the range a(l 4+ sin 6)/\ < 1. Equations (la) and
(2a) were calculated by a variational method assuming for the obstacle
current an angular distribution that is a combination of an even constant
function and an odd sine function. The equivalent radii r have been
obtained by an equivalent static method. These results, valid only in
the small-obstacle range, are estimated to be in error by less than 10 per
cent for the range plotted in the accompanying figures.

Numerical Results.—The circuit parameter X ,\/Zoa cos 6 of Eq. (1a)
is plotted in two parts; in Fig. 5:21-2 the term In (a/277,) is presented as a
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function of 2ro/a and in Fig. 5-21-3 the quantity $={ 1} is given as a
function of a/\ for various values of . The parameter Xi\/Zwa cos 6
of Eq. (2a) is plotted as a function of 2r;/a in Fig. 5:21-2. The functions
fo(d”/d") and fi(d''/d’) appear in graphical form in the curves of Fig.
5:11-7 and Figs. 5-9-4 and 5.9-5, (see Sec. 5-11c¢).

5-22. Array of Semi-infinite Planes, E-plane.—An array consisting of
an infinite number of semi-infinite metallic obstacles of zero thickness
with edges parallel to the magnetic field (in space, plane wave incident
at angle 9; in parallel-plate region, TEM-modes with a relative phase of
(2xb/A) sin 8 in adjacent guides).

d'
4 R
_— T Y, Y,
T o b ° 0
S W N | M fcos A
P ] o——0
E Edg T T, T,
> Lo
- I Ty
Front view Side view Equivalent circuit
I'ig. 5-22-1.

Equiralent-cireuit Parameters.—At reference planes T: and T the
cquivalent network is a simple junction of two uniform transmission
lines whose characteristic admittance ratio is

=2 = cos 6. (1)

The input and output planes are located at distances d and d’ given by

27d 2r

S =2xIn2 4+ sinm! ———— —sin"—-x—
Ncos 0 V1 = 42 V1 F 2
. x
—sint — e 4 S5(22;2y,0) — Sazy, —y) — SizyYy),
\/1—_21/4— 2( y,0) 2(z3y,—y) 2(T39,y)
(2a)
2wd . 2x x
——— =~ 2z In 2 + sin7! ———— — sin"! ——=c=
A/cos § V1 — 4y V1+2
T
—sin™t ——e 0 (2D
V31—2y (26)
2rd” o o, o, 7
x =2 In 2 4+ sin™! 2» sin 1+y—sm 1—_—:‘/

+ 82(22';0,0) — Sa(x";0,—y) — Sa2(z’;0,), (3a)
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2nd’ . . z’ z’

~ ’ S —1 !  _Qqin—! 7 qin— ! - .
~ 2z’ In 2 + sin~! 2z sin Ty sin l_y—{— s
3D)
where
b b . , b
x—X(os(?, y—Xsmf), x—x,
Sa(z;e,8) = sin~! . -
o(s,B) z [\1 o ”]

Restrictions.—The equivalent circuit is valid in the wavelength range
A > 2b. The equations have been obtained by the transform method
and are rigorous in the above range. The approximate Egs. (20) and
(3b) agree with Isgs. (3a) and (3b), respectively, to within 4 per cent for
b/h < 0.5 and 8 < 60°. It is to be noted that the relative phase of the
fields in adjacent guides of the parallel-plate region is (200/N) sin 6; the
average wavefront in the parallel-plate region is therefore the same as that
in the outer space.

Numerical Results—In Figs. 522-2 and 5:22-3 the reference plane
distances wd /b and 7d’ /b are plotted as a function of b/X for various values~
of the angle of incidence 8. The S; functions are tabulated in the
Appendix.

5-23. Array of Semi-infinite Planes, H-plane.—An array consisting
of an infinite number of semi-infinite metallic obstacles of zero thickness

E - -
T_ 7‘ I
T _{__:__—f Tl Nfeos @ 7\5:
. /'/ N T, T
E
Front view Top view Equivalent circuit
I'iG. 5-23-1.

with edges parallel to the cleetric ficld (in space, plane wave incident at
angle 8; in parallel-plate region, Iie-modes with a relative phase of
(2ra/\) sin @ in adjacent guides).
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Equivalent-circuit Parameters—At reference planes 7', and Ty the
equivalent network is a simple junction of two uniform transmission lines
whose characteristic admittance ratio is

Yy A
Yo A, coséd 1

The input and output planes are located at distances d and d’ given by

2rd . x . z
— =sin"! ———— 1 — 2zx1n 2 + Sy(z;y,
eosd = & o + sin o z + Sa(zy,y)
+ Sz, —y) — S82(22;2y,0), (2)
2nd’ N z’ I z’
——— = sin e + sin
Ag V(1 — y)* — (0.5)* V(1 +y)?— (0.5)*
— 22" In 2 4 S:(2";0.5,y) + Sa(x’;0.5,—y) — S2(22';1,0), (3)
where .
__acos b ] _asin 8
D W -

©

S?(I;ayﬂ) = z I:Sin_l —,\/%ﬂi — %]) )\a = ixz.
P (n—8)7F—a h‘(%)

Restrictions.—The equivalent circuit is valid in the range
2a > N > a(l + sin 6).

The circuit parameters have been obtained by the transform method and
are rigorous in the above range. It is to be noted that the relative phase
of the modes in adjacent guides of the parallel-plate region is (2xa/\) sin 6;
the average wavefront in the parallel-plate region is therefore the same
as that in the outer space.

Numerical Results.—The reference plane distances =d/a and =d’/a are
indicated in Figs. 5-23-2 and 5-23-3 as a function of a/A with the angle
of incidence 8 as a parameter. A table of the S; functions appears in the
Appendix.
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ASYMMETRIC STRUCTURES; COUPLING OF TWO GUIDES

6-24. Junction of Two Rectangular Guides, H-plane. a. Symmetri-
cal Case.—A junction of two rectangular guides of unequal widths but of
equal heights (H,,-mode in each rectangular guide).

77 |Gz
/ e le @ ix

77/ |
e L_%// ¥ Z

Cross sectional view Top view Equivalent circuit
Fia. 5-24-1.

=

Equivalent-circuit Parameters.—At reference planes 7' and 7" for the
larger and smaller guide, respectively,

Z(’) _ )\'(1’ Xu 2(1,X0 Z:I
Zo x"—aaﬂ(xn — Xo) [1 +( N ) ’ (o
% ~ Mol (1 750)(1 — 0.584?), < 1, (1b)
0
’
%zi (1+6+6) B=(—a) <1 (10)
I7
2a'X0 2
X 2 1 +( N )
Zi N X 20"\ ) @)
14+ <)\ ) XoX 2
X 2a . 2 9
7~ x 283001 + LS6a?) (1 + 6.7502Q), a1, (2b)
2
2 —
Zo P A Ing 27 Q+Q
fen—3 ("% . Bl (2)
1-5 L+80n3
Lok, (3a)
Zi ~ 0.0084a(1 — 1.50%), a<1, (3b)
EZ ~0, Bg«I1 (3¢)
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Sgc. 5-24] J
where
A
X11 = 1 ]
~ 31 4 + 12Ny + 2(4 + 1)ON 1 + 2N,y
AI
Xp =

1- 42, [(A7 4+ 1)2Ny + 2(4" 4+ 1)CN 1, + C2N 4]

_ _Xh O
Xc—ng X:~A Zy

and

(1+R1)(1—R2)+T2 1 — a\*
A= 0RO =Ry =T R‘z’_( )’

, (1 —=R)OQ + Ry) + T2 1 — a l/a’
w=Go O D R ()

27 4o — a\¥(at+=

C=0—RmRyad—Ry =T¢ T=1—a2<1+a)( ),
Nu=2() {1+ (1?{3‘ [E(e) — " F(a)] [E(e) — aF ()]
" 1204 1 — a\™ 1 {2a\*
-m-er) + 2 (50) [0 ()]

4822 1 —aNet2 [, 1/2aV\

+_(1—a2>2(1+a> "[Q"§<§T>]’

Vo = 2 (2) oo+ 0REC) 1ty — pwy) - et ~ 1)

LT
e (7)o -2 GY))
Nu=2 (‘X’)z [a" — 22 (pot) — ap(e)) — Ry + asz} T
+ e () O e -1 () ]
e (e) P o -2 G |

a = 1 — ol
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The functions F(a) and E(e) are complete elliptical integrals of the first
and second kinds, respectively.
Restrictions.—The equivalent circuit is valid in the range

a
0.5 <X <15

and 2a’ /A > 1. Equations (1a), (2a), and (3a) have been obtained by the
equivalent static method using one static mode incident in each guide
and are estimated to be in error by less than 1 per cent over most of
the wavelength range; the error may rise to as much as 5 per cent at
the limit a/N = 1.5. Equations (1b), (2b), and (3b), valid in the small-
aperture range, are approximations that differ from the more accurate
Egs. (1a), (2a), and (3a) by less than 5 per cent for 0.5 < (a/\) < 1 and
a < 0.4; for @ < 0.5 the difference is less than 10 per cent. Equations
(1e), (2¢), and (3¢) are approximations in the wide-aperture range and
are in error by less than 6 per cent for 0.5 < (a/A) < 1 and 8 < 0.3.
The constants X1, X1, and Xs, are the impedance matrix elements of the
T network referred to a common reference plane 7' and correspond-to a
characteristic impedance choice, Z;/Zy = Na/Aa'.

Numerical Results.—Figure 5-24-2 contain plots of Zg\,a/Zo\,a’
and I/a as functions of « for various values of the parameter a/A. The
quantities X2,/ Z02a and Zs2a/X), are plotted in Fig. 5-24-3 as a function
of « for various values of the parameter a/\. These results have been
plotted from data obtained by use of the equivalent static method with
two modes incident in each guide and are somewhat more accurate than
the analytic results given in Eqs. (1a), (2a), and (3a).

b. Asymmetrical Case.—A junction of two rectangular guides of
unequal widths but of equal heights (H,-mode in each rectangular guide).

|V
peimali

Front view Top view Equivalent circuit
Fia. 5-24-4.

Equivalent-circuit Parameters—At reference planes 7' and T for the
larger and smaller guide, respectively.
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—g—“ = same as in Eq. (la), Sec. 5-24aq, (4a)
0
Zy )\' ” .
7o~ Ao ), a1, (4b)
A,
zZy p LB o
a
X
7. = same as Eq. (2a), Sec. 5-24a, (5a)
0
X 2a
7= - 5.76404(1 — 1.33a%)(1 + 41.324Q), akl (5b)
0
Zy . N B T 2
X728 (240 fims[ree-gomi]
2 g8 2
4 o\l 8 2 ,
[1 +7(1 —ﬁ)z(x) ] —g[l +351DE:|[Q+Q]}- (5¢)
;lz- = same as in Eq. (3a), Sec. 5-24q, (6a)
é =~ 0.0259a(1 — 0.6a?%), akl, (6b)
% ~0, a~1 (6¢)

The parameters X 11, X1z, X2, Xo, 4, A, C, @, &’ and § are defined as in
Sec. 5:24a but with

_ 1+ 3a%) {1 — a\*
Rl__(l—-oﬁ)(l—}—a)]
3+ o\ 1 — a\""

R, (1——a2)(1+a) !
T 16e2  f1 — &\**V®
T T = ad) 1+a) !

all — a?) o 16¢2
N“=2()[1+ e Bl e g B BT ]

25 2 (152) Te -3 6)]
w2 2 (50 T le 20
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2
a . 8a(l — «a?) l -« 16a?  apa g
2<X> [“ 3t e i T igge e R

32(12 1_ a 2a+(1/a) 7|2 1 a 2
+2[<1—a2>2<1+a> HQ"Q(X)]
32 1 11—\, 1{¢V
et () Tle ()]

2 . 7\2 _
N12=2(9> [(1 2“) In L a—Rl-—oﬁRQ]T

N22

o 14+«
S 2 T30
A e Te-300)

Restrictions.—The equivalent circuit is valid in the range

Q

a
0.5 < i\ < 1.0.

Equations (4a), (5a), and (6a) have been obtained by the equivalent
static method employing one static mode incident in each guide. These
equations are estimated to be in error by less than 1 per cent over most
of the wavelength range and by as high as 5 per cent at the limit a/x = 1.0.
Equations (4b), (5b), and (6b), valid in the small-aperture range, are
approximations that differ from Eqgs. (4a), {5a), and (6a) by less than 5
per cent for @« < 0.4 and 0.5 < a/A» < 1. Equations (4¢), (5¢), and ((6¢)
are approximations in the large-aperture range and are in error by less
than 10 per cent for 8 < 0.2 and 0.5 < a/x < 0.8. The parameters
X1, X1z, and Xy, are the impedance matrix elements of the T network
referred to the common reference plane 7 and correspond to a character-
istic impedance choice Z3/Zo = Ma/Na'.

Numerical Results.—In Fig. 5-24-5 there are indicated curves for
Zina*/Zo\a”” and 1/a as functions of a for various values of the param-
eter N/a. Figure 5-24-6 contains a plot of X\,/Z¢2a as a function of «
for various values of A/a. These results have been plotted from data
that are obtained by use of the equivalent static method with two modes
incident in each guide and thus are somewhat more accurate than the
analytic results indicated in Eqs. (4a), (5a), and (6a).

5-25. Bifurcation of a Rectangular Guide, H-plane.—A bifurcation
of a rectangular guide by a metallic wall of zero thickness aligned parallel
to the electric field (H -modes in rectangular guides 1 and 2, no propaga-
tion in guide 3).
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Asymmetrical case.

H

5.— Characteristic impedance ratio and location of terminal plane for H-plane junction,
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® 1@t 2, Z,

T-l d b a,
R a
Qg T T
1 1 ! 2
LT, T
Cross sectional view Top view Equivalent circuit
Fig. 5-25-1.

Equivalent-circuit Parameters.—At reference planes T; and T'»in guides
1 and 2, respectively, the equivalent network is a simple junction of two
uniform transmission lines whose characteristic impedance ratio is

Zy N

7N ey

The terminals 7'y and T's are located at distances d and d’ given by

6 = 2md =z<%lng+a—31ng> —sin7! ——
a 2] a as
Vi -
+ Sg(x,l,O) - Sz <IZ?2, %’7 0) - S2 (.Ta, '(:1—3: ), (2)
z9’=2"rd=Jz’<%lng—+—%lng — sin™?! s

[12] a ag) \/17(132
- ~a

+ 8, (x’;ﬂ) 0) — Si(23;1,0) — S, (zé; 2, 0>, 3)
[22)) 23]

where
2a 2a, 2a3
T =— Ty = — X3 = —» $=$2+1‘3,
x(l )\0 )\ﬂ
2a 2a; 2a
’ ’ ’ 3 ’ ’ ’
r = p Ty = |7 T3 = 70 X =x2+x3,
A, Ay Ag
o
. z T
Sa(z;a,0) = sinT! e — =
Vit = a? n
n=2

and the wavelengths in guides 1 and 2, respectively, are

W S N =

V- (@)

:/“x<22;)2‘
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An alternative representation at the reference plane 7' is provided by a
T-type network having the reactance parameters

A

Z 4 tan 6 tan ¢

Xu a7 ,

sun_%

Z A, tan 9 — tan ¢
g

1

2 sec 0 sec ¢

X _ ,
=
Z )ﬁtanO—tan ¢
Ay
ﬂ Y4
&=>\,1—{— tan 6 tan @
A Ao Al

)\—Z tan 6 — tan ¢’

Restrictions.—The equivalent circuits are valid in the rangea < A < 2a
and A < 2a;. The circuit parameters have been obtained by the
transform method and are rigorous in the above range.

Numerical Results.—In Fig. 5:25-2, 6 and 6’ are plotted as functions
of as/a for various values of a/\ in the range of validity of the formulas.
The 8, functions are tabulated in the Appendix.

5-26. Change in Height of Rectangular Guide. a. Symmetrical Case.
An axially symmetrical junction of two rectangular guides of equal
widths and unequal heights (H;,-mode in rectangular guides).

7z T o VE
7727222

o —
'.‘_
Z
L

Cross sechonal view Side view Equivalent circuit
Fia. 5-26-1.

Equivalent-circuit Parameters.—At the terminal plane T

y1=p=«=1-39 (1)
B 2 1 —a?\ (14 a\(a+i) A+ A +2C
T’S—T[l“( 4a>1—a) tEiga o

b\ /1 — « S5a? — 1 4 o2C
t(w) () (e +3) | e
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B 2 1 = o\ (14 a\si(atl) g]
YONE[IH<4(1 >(1—a> t7) (20)
B 2 ea?lbz_“]
TUNX:\}HE—*‘?‘*'E(E) (1 OL) , a((l, (20)
2

21In = N
B 2b(5Y 8 17 (b
70%-);<§> __1—5+1+E(E) , K1, (2d)

where

b2
A=<1+a>2“1+ 1‘(?) 1+ 32

bl
, 1+a2/“1+ 1"(?;)
A =
1—(1 b,z 1__a2

Y da :
C= 1 = at ) 6=2718

Restrictions.—The equivalent circuit is valid in the range b/\, < 1.
Equation (2a) has been obtained by the equivalent static method employ-
ing a static aperture field due to the incidence of the two lowest modes and
is correct to within 1 per cent in the range b/A, < 1. The approximate
Eq. (2b) is correct to within 3 per cent for (b/)\,) < 0.7; for (b/A,) > 0.7
it is still correct to within 3 per cent if @« < 0.7. Equation (2¢) is an
asymptotic expansion of Eq. (2a) correct to within 5 per cent if a < 0.6
and b/\, < 0.5 and to within 2 per cent if @ < 0.4 and b/A, < 0.4.
Equation (2d) is an asymptotic expansion of Eq. (2a) correct to within 5
per cent when & < 0.5 and b/\, < 0.5 and to within 3 per cent when
8 < 0.4 and b/x, < 04.

Numerical Results—In Fig. 5-26-3 B)\,/Y b, as obtained from Eq.
(2a), is plotted as a function of b’/b with b/), as a parameter.

Experimental Results.—The above results have been verified experi-
mentally at least for the cases /N, = 0.23 and « > 0.15 to within a few
per cent.

b. Asymmeirical Case.—An axially asymmetrical junction of two
rectangular guides of equal widths but unequal heights (Hi,-modes in
rectangular guides).
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\; w1

Cross sectional view Side view Equivalent circuit
Fic. 5-26-2,

Equivalent-circuit Parameters—Same as Sec. 526a except A, is
replaced by A,/2.

Restrictions.—Same as Sec. 526a except \, is replaced by A,/2.

Numerical Results.—If the \, in Fig. 5-26-3 is replaced by \,/2, one
obtains a plot of BA,/2Y b as a function of b'/b with 2b/X, as a parameter.

5-27. Change in Radius of Coaxial Guide. a. Equal Outer Radii.—
A junction of two coaxial guides of unequal inner but equal outer radii
(principal mode in coaxial guides).

b
1
/ l bo Y, l Yy
2b 7‘
a B
H 28 | 2¢ ’
l ‘ A A
T T T
Cross sectional view Side view Equivalent circuit

Fie. 5-27-1.

Equivalent-circuit Parameters.—At the reference plane T

, In<
LA ) (n
Yo 1 _(E
"
B 2boA, 1 — o\ (1 4 a\s(a+l) A+ 4" +2C
Y, T [2111( 4o ><1—a) T4 AAT - C*?
160\ (1 — a\“(5a2 =1 , 42C\ Az]
+§(7C> (1+a) (1—a2 +§T) tg) (9
B ~2b0A1 4 202 bo 2 Y _14_2]
?;rv N [21114-—(14‘?‘*‘4(?) (1 a?)t + 7 |’ a1, (2b)

2
4 1n = 2
B 2bod: (Y’ 3 17 (bo A, ‘
Y.~ T (§> [1-a+2+7<7) +7}’ b, (2c)
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wherc

e — | -
a=1-58="2, by = ¢ — q, by = ¢ — b, e = 271K
c—a

The terms A, A’, and C are defined in Sec. 5-26a, provided the A, b,
and b’ therein are replaced by A/2, by, and 6§ of this section.  The terms
A and A, are defined in Sec. 5-3a.

Restrictions.—The equivalent circuit is valid in the wavelength
range A > 2(c — a)/v1, provided the field is rotationally symimetrical.
The circuit parameter has been evaluated by a variational method treat-
ing the first higher E-mode corrcctly and all higher modes by plane-
parallel approximations. Lquation (2¢) is estimated to be correet 1o
within a few per cent for ¢/a < 5 and for wavelengths not too close to
2(c — a)/v1. Equation (2b) is a small-aperture approximation and,
for ¢/a = 1, agrees with 1iq. (2a) to within 5 per cent for o < 0.6 and
2bo/N < 0.5 and to within 2 per cent for @ < 0.4 and 2h,/A < 0.4,
Similarly, Eq. (2¢) is an asymptotic expansion of Iiq. (2¢) and, for
¢/a = 1, is correct to within 5 per cent if 3 < 0.5 and 2by/A < 0.5 and to
within 3 per cent if 6 < 0.4 and 2bo/A < 0.4. Forc/a > 1 the agreement,
of Egs. (2b) and (2¢) with (2a) is presumably of the same order of magni-
tude in the indicated ranges.

Numerical Results.—For ¢/a = 1, the graph of BN/Y 2b, as a func-
tion of a for various values of 2by/\ may he obtained from Tig. 5-26-3
if the ), therein is replaced everywhere by A/2 and b by be. Forc/a > 1,
BX\/Y2bs may be obtained from its value for ¢/a = 1 by addition of
the term A4,/2 and multiplication of the resulting sum by A, The
quantities A; and A4, are plotted in Figs. 53-2 to 53-4. The term

Ty = (% — 1) X0 is tabulated in Table 2-3 as a function of the ratio c¢/a

(note that the ¢ of Table 2-3 is the ¢/a of this section).
b. Equal Inner Radii.—A junction of two coaxial guides of equal
inner but unequal outer radii (principal mode in coaxial guides).

/ I rTw
2b .
H 20 2¢ ‘ iB
I i
. l W/ bN A
T

Cross sectional view Side view Equivalent circuit
Fia. 6-27-2.
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Equivalent-circuit Parameters.—At the reference plane T

c
y; g
X - ’
Yo lng (1)
B
y, = same as Egs. (2a) to (2¢) of Sec. 5-27a,
0
except that now
a=1_6=3:2’ bo =c — aq, bf =0 —a.

The terms A, A, and C are defined in Sec. 5:26a provided the \,, b, and
b’ therein are replaced by A/2, by, and b}, respectively, of this section.
The terms A, and A, are the same as in Sec. 5-3b.

Restrictions.—Same as in Sec. 5-27a.

Nwumerical Results.—For ¢/a = 1, the graph of B\/Y:2b, as a func-
tion of & for various values of 2bo/\ may be obtained from Fig. 5-26-3
if the A, therein is replaced everywhere by A/2. For ¢/a > 1, B\/Y2b,
may be obtained from its value for ¢/a = 1 by addition of the term
A,/2 and multiplication of the resulting sum by A:.. The quantities
Ay and A, are plotted in Figs. 5-3-6 to 5-3-8.

65-28. E-plane Corners. a. Right-angle Bends.—A right-angle E-plane
junction of two rectangular guides of equal dimensions (Hi,-mode in
rectangular guides).

To %
b
T'E==-
d=_ 1
E T T
General view Side view Equivalent circuit

Fia. 5-28-1,

Equivalent-circuit Paramelers.—At reference planes 7' the equivalent
circuit is pure shunt. The relative shunt susceptance and location of the

terminal planes are given by
()
+] +1
Yo P B,

By 7s
Y,

B
= , )
Y, (1)
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2r(b — d) _ By B.
——N = cot~ ( Y. Yo)’ (2)

Bazgl_) _COt"x+L+I_1n2

Yo N x mz? 6
-z Az
Ao@ 2 + (A1 — 2)6_' + (1 —+— 5e— ") —
16
— 1 A ) (3(1)
4
B, = 2b [0 878 4+ 0.498 (2b> ], g) <1, (3b)
Yo N, Ay
2By _ Ba_ N e — -2[ T 1
Y, Y. = 220 | +7rcotmr — w22 51n 2 n 8 n—(m
n=1
! _;_r —x — AO
1108 - (A1+Az)e +(1 — 3e ar),_T
+ ma? i Y (a)
14+ (1 — 37 22— 22
B, Ao 2b 20
¥, = ﬂ[l_O]H(M) ] N < “
and
2
= )\g,
_ 4 a2? ' 8
Ao = rl— z2 A = 4o sinh 7’

_ 1 _ 1 1
A= r1 — 0.5z2 Ar =4 [\/1 — 2l — 6—21\/?:2) R e—?w].

An alternative circuit at the reference
planes T’ is shown in Fig. 5-28-2.

Restrictions.—The equivalent circuits are
valid in the range 2h/\, < 1. The circuit
parameters obtained by the equivalent static
method, employing two lowest modes inci-
dent in each guide, are accurate to within 1
per cent in the above range. Iquations (3b) F1g. 5-28-2.
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F1c. 5-28-3.—Shunt susceptance and location of terminal planes T for right-angle bend. E-plane.
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and (4b) are asymptotic approximations to B, and B, that agree
with the values from Egs. (3a) and (4a) to within 8 per cent for
2b/2, < 0.6.

Numerical Results.—In Fig. 5-28-3, d/b and BX,/Y:2b are plotted as
functions of 2b/A,. The alternative circuit parameters B.\,/Yo2b and
By27b/Y oAy are shown in Fig. 5:28-4, as functions of 2b/),.

Ezperimental Results.—A few measured values for B, and B, are
indicated by the circled points in Fig. 5-28-4. These data were taken at
wavelengths in the vicinity of 3 em.

b. Arbitrary Angle Bends.—A symmetrical, arbitrary angle, E-plane
junction of two rectangular guides of equal dimensions (Hi;-mode in
rectangular guides).

PSS
a >
<
T;
General View Side View Equivalent Circuit
Fic. 5-28-5. .
Equivalent-circuit Parameters.—At the reference planes T'
B. 2b 1 AN 1
E-xlvl (=) o -3} W
By A 8
?0 = 2—‘”7) cot 2,' (2)

where ¥(z) is the derivative of the logarithm of x!

Restrictions.—The equivalent eircuit is applicable in the wavelength
range 2b/A, < 1. The circuit parameters have been obtained by a
simple equivalent static method and are rigorous only in the static limit
b/x, = 0.

Numerical Results.—The circuit parameters Bo\,/Y2b and Byb/Y oA,
are plotted as a function of 6 in Fig. 528-6. The solid curves represent
the static values of the parameters as given in Egs. (1) and (2).

Experimental Resulis.—Measured values of the circuit parameters
are indicated by the circled points in Fig. 528-6. These data apply
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Fia. 5:28-6.—Circuit parameters for E-plane bends of arbitrary angle.
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t